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WAVES NX : HRTF pour une source Mono à 30�
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 Pour K r = 1 :
F = C / (2 π r)

 F ≈ 600 Hz

K r = 2 π r / λ

  (C = Célérité du son)
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WAVES NX : HRTF pour une source Mono se déplaçant vers la Droite 
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WAVES NX : HRTF pour une source Stéréo à  30�et à  120�

Chemins croisés :
Modèle de Woodworth 
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“Écoute de travail” =  Dc (à la console) + 40 cm

-∞

+6 dB

= Dc

Chemins croisés
Modèle de Woodworth (1962)

Chemins croisés
Modèle de Woodworth (1962)



“Écoute de confort” =  Dc (à la console) + 2 m

= Dc

Chemins croisés
Modèle de Woodworth (1962)

Chemins croisés
Modèle de Woodworth (1962)



Modèle de Woodworth (1962)

Filtrage en peigne pour une source Stéréo à 30�

Cir

∆T = ( Cir / (2 ∏ x 340) ) x ( ( ∏ / 6 ) + sin 30�)

Filtrage en peigne pour une source Stéréo à 30�

Pour ma tête à 30�:  ∆T = 0,28 ms



WAVES NX : HRTF pour une source Stéréo
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WAVES NX : HRTF pour une source Stéréo à 30�et à  120�
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WAVES NX : différence entre HRTF  à 30�et  à 120�
Pour une source stéréo émettant le même son ( phase +1 )



Fréquence relative des jugements en %  :  Devant 0�et  Derrière 180�
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sont empruntés à Blauert 1969   
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à Chateau 1995 pour les 
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LE SON ET L’ESPACE
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La localisation auditive 

des sons dans l’espace. 

Par Georges Canévet 
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§ Les HRTF de Robinson & Whittle 1960 :

AZIMUT ÉLÉVATION

Directivité marquée de 2 fréquences :  4 kHz et  8 kHz.
§ le 4 kHz = (présence / absence) ou la perception des distances.
§ le 8 kHz = (brillance / mat) et l’Espace sonore en 3D.

Domaine cognitif sensoriel dans un environnement 3D 

(HRTF : Head Related Transfer Function)



AZIMUT ÉLÉVATION
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Dc est mal perçue à l’arrière ( Ls Rs ) ⇒ délai pour conformité ITU.
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Domaine cognitif sensoriel dans un environnement 3D 
§ Les HRTF de Robinson & Whittle 1960 :



COMPARAISON ENTRE L’AUDITIONET LA VISION : 

• Présence de bâtonnets
• Forte sensibilité

• Faible pouvoir de 
discrimination

• Traite les informations 
relatives au mouvement

• Rôle : Détection de 
l’information

• Présence de cônes
• Faible sensibilité

• Forte acuité

• Traite les informations 
relatives à la forme et à la 
couleur

• Rôle : Reconnaissance de 
l’information

Rétine Périphérique :Rétine Centrale :

Voir :  wikipedia.org/Rétine

⇔ 4 KHz ⇔ 8 KHz



L’enregistrement binaural :

ROLAND CS-10EM

ADPHOX BME-200
4 cm ≈ 1/2 x λ (à 4 kHz)

PAVILLON pour    
l’espace frontal.

2 cm ≈ 1/2 xλ (à 8 kHz)
TRAGUS pour 
l’espace dorsal.

Diffusion et Réflexion pour un 

objet de dimension ≥ 1/2 x λ

DPA 4060 + DUA0560

BL 2012
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for interaural time difference
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The Woodworth model and formula for interaural time difference is frequently used as a standard in
physiological and psychoacoustical studies of binaural hearing for humans and other animals. It is a
frequency-independent, ray-tracing model of a rigid spherical head that is expected to agree with the
high-frequency limit of an exact diffraction model. The predictions by the Woodworth model for an-
tipodal ears and for incident plane waves are here compared with the predictions of the exact model
as a function of frequency to quantify the discrepancy when the frequency is not high. In a second
calculation, the Woodworth model is extended to arbitrary ear angles, both for plane-wave incidence
and for finite point-source distance. The extended Woodworth model leads to different formulas in
six different regions defined by ear angle and source distance. It is noted that the characteristic cusp
in Woodworth’s well-known function comes from ignoring the longer of the two paths around the
head in circumstances when the longer path is actually important. This error can be readily cor-
rected. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4861243]

PACS number(s): 43.66.Pn, 43.66.Qp [EB] Pages: 817–823

I. INTRODUCTION

The Woodworth model and formula1 compute the inter-
aural time difference (ITD) for a human listener or other ani-
mal assuming that the head is a rigid sphere and that the ears
are antipodal points. The model appeared in the textbook by
Woodworth (1938) without derivation or qualifications and
is based on ray tracing with simple geometry. The formula
was found to be in excellent agreement with the interaural
delay for clicks measured on human listeners by Feddersen
et al. (1957), and it has been used often in binaural acoustics
(e.g., Carlile, 1996; Schnupp et al., 2003) and binaural syn-
thesis (e.g., Brown and Duda, 1998; Nam et al., 2008).

The Woodworth model is physically valid when the
wavelength of the sound is much smaller than the radius of
the head. For a head of radius 87.5 mm in room-temperature
air, this corresponds to frequencies above about 4 kHz. In
this article, we show, by means of a straightforward but
extensive numerical calculation, that the model and its
creeping wave solution approach the high-frequency limit of
the exact diffraction equation developed by Rayleigh (1896)
and made more accessible by Rschevkin (1963), Kuhn
(1977), and by Duda and Martens (1998). The numerical cal-
culation establishes the limits of validity of the formula as
the frequency of the sound departs from infinity and quanti-
fies the error in Woodworth’s approximation. The error can
be considerable when the assumptions of the model are not
respected. This article also extends the Woodworth model so
that it applies when sources are a finite distance away from

the head and when the ears are not antipodal. The extended
model can be useful when the spectrum of the signal is not
known exactly so that the exact diffraction model is not ap-
plicable. Elements of this extension have been given in pre-
vious literature, as will be noted in the following text, but
the extension given here is complete. The extensions are use-
ful when the ray-tracing assumptions of the original model
are valid, but the geometry differs from the original.

II. WOODWORTH MODEL AS A LIMIT

The Woodworth model assumes a rigid, spherical head
and a source of sound at some azimuth angle with respect to
the forward direction so that the source is closer to one ear
than to the other. The ITD is given by the extra path length to
the far ear divided by the speed of sound. In turn, the path
lengths are computed by ray-tracing geometry. The path
length from a source to an unoccluded ear is the straight-line
distance between the source and the ear. The path length to
an occluded ear is given by the straight-line path of a tangent
to the sphere plus the arc length from the point of tangency to
the ear. Thus it is assumed that the wave creeps around the
surface of the head to an occluded ear. Only the shortest arc
length is included in the calculation for an occluded ear. The
wave that creeps around the far side of the head is neglected.

A. Woodworth formula, antipodal ears

Woodworth’s model for the ITD assumed that the arriv-
ing sound is a plane wave (infinite source distance) and that
the ears are 90! back from the forward direction (ear angle
of 90!). With those assumptions, there are two formulas for
the ITD for a source on the right side of the head,

a)Author to whom correspondence should be addressed. Electronic mail:
hartmann@pa.msu.edu
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ITD ¼ a=cð Þ hþ sin hð Þ½ & 0 ' h ' p=2½ & (1a)

and

ITD ¼ a=cð Þ p( hþ sin hð Þ½ & p=2 ' h ' p½ &; (1b)

where h is the azimuth in radians (0' h'p) for the source
measured from the forward direction, a is the head radius,
and c is the speed of sound. The first of these formulas is for
a source in front of the head (where the nose is), and the path
to the occluded ear is around the front of the head. The sec-
ond formula is for a source in back (source azimuth greater
than 90)) so that the path to the occluded ear is also in back.
For this and other sections of this article, it is assumed that
the head is left-right symmetrical having reflection symme-
try through the mid-sagittal plane. Therefore the sign of the
ITD will always be positive when the source is to the right
of the mid-sagittal plane, and it is enough to give formulas
for a source on the right with azimuths between 0) and 180).
ITDs for sources on the left are the same except that the
signs of h and the ITD are both reversed.

Because the standard Woodworth model assumes that
the ear angle is 90), this form of the model is front-back
symmetrical and exhibits a cone of confusion, as noted by
Woodworth and Schlosberg (1954). For any source located
on the surface of a cone with rotational symmetry about the
interaural axis, the ITD will be the same.

B. Exact diffraction calculation

Our test of the Woodworth model is based on an exact
diffraction calculation for a rigid, spherical head. The rigidity
assumption says that the component of the wave velocity per-
pendicular to the surface of the head is zero. It corresponds to
an infinite impedance discontinuity at the surface. Such an
assumption is valid for a head in air. It is not valid for a head
in other media such as water, where the impedance disconti-
nuity is not so large (Hollien and Rothman, 1971; Wells and
Ross, 1980), but we will not consider such cases here.
Consistent with the assumptions of the Woodworth model,
the diffraction calculation assumes a plane-wave incident on
a spherical head with an ear angle of 90).

The diffraction calculation of the pressure on the surface
of a rigid sphere is an infinite sum of partial waves,

p h0ð Þ ¼ po

ka

! "2XN

n¼0

inþ1 2nþ 1ð ÞPn cosh0ð Þ
h0n kað Þ

; (2)

where p(h0) is the complex pressure at a point on the sphere,
and h0 is the angle between a radius to that point and a
directed line to the source. Pressure po is a reference, equal
to what the pressure would be at the location of the center of
the head if the head were absent. Function Pn is a Legendre
polynomial, and h0n is the derivative of a spherical Hankel
function of the second kind with respect to its argument. The
argument ka is the product of the wave number k (defined as
2p divided by the wavelength) and the head radius a, which
is nominally 87.5 mm (Hartley and Fry, 1921; Algazi et al.,
2001). The upper limit on the sum, N, must be infinite to

obtain an exact solution, but because the sum converges, N
is limited in practical computation. Larger values of N are
required for greater precision or for higher frequencies,
where the sum converges more slowly.

We are interested in the pressure on the sphere where
the ears are located, at angle hE clockwise and counterclock-
wise from the forward direction. To be clear, by definition
hE is the same positive number for both ears. For instance,
for antipodal ears hE¼ 90). Therefore to compute the pres-
sure at the right ear (nearer the source) h 0¼ hE( h, and for
the left ear (farther from the source) h 0¼ hEþ h. That is how
h 0 in Eq. (2) is determined from the ear angle hE and the
source azimuth h for h> 0.

The phase of a signal, /, is given by the imaginary part
of the natural logarithm of the pressure at the ear. For the
right ear, for example, /R¼ Im{ln[p(hE( h)]}. The ITD is
the interaural phase difference (in radians) divided by the
angular frequency x¼ 2pf, i.e.,

ITD ¼ Im ln p hE þ hð Þ=p hE ( hð Þ
# $% &

=x (3)

with hE set equal to p/2.
Equations (2) and (3) lead to an exact solution for the

ITD, and that solution ought to be an adequate test for any
alternative calculation such as the Woodworth formula.
However, several years ago we had occasion to compare the
predictions of that solution with interaural phase measure-
ments made on an 87.5-mm sphere in an anechoic room
using an array of 13 loudspeakers separated by 7.5).
Measurements for 15 frequencies spanning the range from
0.2 to 6 kHz therefore led to 195 comparisons. Because of
geometrical inaccuracies in the array, measurements were
made twice, first clockwise (speakers to the right of the
sphere), then counterclockwise (speakers to the left of the
sphere). The two measurements differed by an average of
about 20) of interaural phase angle. In the comparison, the
solution from Eqs. (2) and (3) split the difference between
the two measurements on 156 of the 195 comparisons, dem-
onstrating good experimental correspondence between
model and measurement.

Using Eqs. (2) and (3), we computed the ITD for fre-
quency f equal to 0.5 kHz, a low frequency. The frequency is
low enough that the ITD from the full diffraction calculation
is approximately given by the low-frequency limit formula,
ITD¼ (3a/c) sin(h) (not shown in figures). The maximum
error made by the low-frequency limit occurs near 30) where
the approximation is about 16 ls too low. At 90), the low-
frequency limit approximation is 6 ls too high. By contrast,
Fig. 1 shows that the frequency-independent Woodworth for-
mula seriously underestimates the ITD for 0.5 kHz. The error
can be as large as 180 ls (azimuth of 60)). At 0.5 kHz, the
ratio of wavelength to head radius is 7.9. Similar errors can
be expected for the head of any animal whenever that ratio is
as large as that. Calculations of the dispersion for a spherical
head with a radius of 87.5 mm show that 0.5 kHz is the upper
edge of the low-frequency region where the low-frequency
limit applies. For all lower frequencies, the limit continues
to apply, but as the frequency increases to 2 kHz, the ITD
for a given azimuth decreases rather rapidly (e.g., Constan
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and Hartmann, 2003, Fig. 1). As a result, the Woodworth
formula is superior to the low-frequency limit (smaller error)
when the frequency is greater than 1.5 kHz.

Using Eqs. (2) and (3), we computed the ITD for 2, 5,
10, and 20 kHz, where the ratio of wavelength to head radius
is, respectively, 2.0, 0.79, 0.39, and 0.20. As often noted, the
sum over partial waves converges slowly when the fre-
quency is high (large ka), and to obtain acceptable accuracy
for ITD, our calculation for 20 kHz required as many as
N¼ 54 terms in the sum. Using such a large number of terms
in a brute-force calculation is not the standard approach to
computing the high-frequency limit of a partial wave sum
such as Eq. (2), although it is possible to do with good preci-
sion on modern computers. The standard approach is to use
the Sommerfeld–Watson transformation (Junger and Feit,
1986). That approach leads to new physical insight. For
instance, it shows that the creeping wave decays exponen-
tially with increasing path angle around the head (Pierce,
1981). However, by summing the terms for finite frequen-
cies, we are able to observe the errors made by the
Woodworth model when the frequency is not very high, as
shown in Fig. 1. For frequencies higher than 0.5 kHz, the
largest errors tend to occur for azimuths between 70" and
85": 86 ls at 2 kHz, 51 ls at 5 kHz, 32 ls at 10 kHz, 17 ls at
20 kHz.

In a context where the signals are narrow band, such as
sine tones, there are additional considerations. The highest
frequency at which human listeners are sensitive to the ITD
in the fine structure of a waveform is about 1.5 kHz
(Brughera et al., 2013). For that frequency, the error in the
Woodworth formula becomes as large as 100 ls at an

azimuth of 63". Also, the ITD is not useful if the correspond-
ing interaural phase difference (IPD) is more than 180". The
dashed line in Fig. 2 shows the azimuth for which the IPD
becomes as large as 180" for a frequency as high as f, shown
on the horizontal axis. The solid line shows the maximum
error, as a function of frequency, given that the azimuth is
less than shown by the dashed line. The limited azimuth has
the effect of limiting the maximum error made by the
Woodworth formula for practical circumstances. When the
frequency is less than 0.9 kHz, the azimuth at which the
maximum error occurs is between 50" and 60". When the
frequency is greater than 0.9 kHz, the azimuth of maximum
error follows the dashed curve.

III. EXTENDING WOODWORTH’S MODEL

Our extensions of Woodworth’s model are expected to
be useful in computing ITDs for clicks, high-frequency
tones, and high-frequency noise bands, where the assump-
tions of a ray-tracing model are approximately realized. The
extensions involve the same basic wave physics as the origi-
nal model with the ITD computed from the extra path length
to the far ear. The path lengths are again composed of
straight-line paths and creeping waves. Again, only the
shortest path is included in the calculation for waves that
creep to an occluded ear, a step that is made plausible by the
fact that creeping wave amplitudes decay exponentially. We
will consider situations in which the longest and shortest
paths are not dissimilar in Sec. III B 1.

The three conditions involved in extending the model
are shown in (a), (b), and (c) of Fig. 3. Condition (a) is the
original model with plane-wave incidence and antipodal
ears. Condition (b) relaxes the restriction to antipodal ears,
permitting arbitrary ear angles, but retains the plane-wave
incidence. Condition (c) allows for both arbitrary ear angles
and finite source distance. Labels (a), (b), and (c) are then

FIG. 1. Interaural time difference as a function of azimuth for plane-wave
incidence and antipodal ears. The heavy line is from the Woodworth for-
mula in Eq. (1). Lighter lines come from the exact diffraction formula for
frequencies of 0.5, 2, 5, 10, and 20 kHz.

FIG. 2. Limits on ITDs in narrow-band signals caused by the p-limit. The
dashed line shows the azimuth and frequency for which the IPD is 180"

according to the spherical head model (the p-limit). The solid line (axis
labels on the right) indicates the maximum error of the Woodworth formula
within the boundaries of azimuth and frequency allowed by the p-limit.

J. Acoust. Soc. Am., Vol. 135, No. 2, February 2014 N. L. Aaronson and W. M. Hartmann: Woodworth model 819



also used to label the relevant equations and then used again
in Fig. 4, which specifies the regions of validity of those
equations.

Because the basic physical assumptions are similar, the
validity of the extensions continues to be limited to high-
frequency sounds where the wavelength is considerably
smaller than the head radius.

A. Plane wave source, antipodal ears

The original Woodworth model for an infinite source
distance and ear angles of 90! leads to the two formulas for
the ITD given in Eqs. (1a) and (1b), repeated here and rela-
beled to be consistent with Fig. 4,

ITD ¼ a=cð Þ hþ sin hð Þ½ ' h ( h ( p=2½ ' (a2)

and

ITD ¼ a=cð Þ p) hþ sin hð Þ½ ' p=2 ( h ( p½ '; (a3)

the regions of validity of these two equations are shown in
Fig. 4(a).

B. Arbitrary ear angles

More realistic models of the head allow for ear angles
greater than 90!, i.e., hE> 90. Hartley and Fry (1921)

measured the ear separation to be 165!, corresponding to an
ear angle of (360) 165)/2¼ 97.5! in a spherical-head con-
text. Duda and Martens (1998) used 100!, as did Treeby
et al. (2007). Behind-the-ear hearing aids or cochlear
implant microphones involve even larger ear angles. When
the ears are no longer antipodal, the symmetry between front
and back is broken and the surfaces of binaural confusion
are no longer circular cones. The back of the (otherwise uni-
formly spherical) head differs from the front only because
the ears are on the back.

The purpose of this section is to show how to extend
the Woodworth model to other ear angles hE, where
90( hE( 180! while retaining the incident plane wave
assumption. As observed by Duda and Martens (1998), the
ingredients for this treatment consist of only two equa-
tions, one for an occluded ear and one for an unoccluded
ear. However, the practical implementation of those equa-
tions requires the user to observe geometrical limiting
conditions.

In the end, there are actually five separate formulas
required to compute the ITD in general. The correct formula
to use is determined by a set of inequalities for azimuth h
and ear angle hE. The inequalities are complicated, and they
are best expressed in graphical form as shown by the lines in
Fig. 4(b). For instance, if h is below the line h¼ hE) 90 and
h is also below the line h¼ 180) hE, then the right equation
to use is Eq. (b1). Again, if the ear angle is hE¼ 120!, then
we would use Eq. (b1) for azimuths 0< h< 30!, Eq. (b2) for

FIG. 3. An illustration of the three geo-
metrical conditions involved in extend-
ing the Woodworth model. Condition
(a) is the original Woodworth model
with infinite source distance (plane
wave incidence) and antipodal ears
(solid dots) (hE¼ 90!). Condition (b)
maintains plane wave incidence but
allows for arbitrary ear angles hE.
Condition (c) allows for a finite source
distance as well as arbitrary ear angles.

FIG. 4. Regions of azimuth and ear-
angle defining the ranges of validity
for equations in the extended
Woodworth model. (a) Plane-wave
incidence and antipodal ears. (b)
Plane-wave incidence and general ear
angle. (c) Point source and general ear
angle. Angle c is defined by cos
c¼ 1/q¼ a/r. In the limit that
hE¼ 90!, (b) becomes equivalent to
part (a). In the limit that a/r is zero so
that c¼ 90!, (b) and (c) become the
same.

820 J. Acoust. Soc. Am., Vol. 135, No. 2, February 2014 N. L. Aaronson and W. M. Hartmann: Woodworth model



30!< h< 60!, Eq. (b3) for 60!< h< 150!, and Eq. (b4) for
150!< h< 180!.

Geometrical descriptions of the regions are as follows:

(1) Region b1: Both ears are occluded and the path to the far
ear is in front.

(2) Region b2: Only the far ear is occluded and the path to
the far ear is in front.

(3) Region b3: Only the far ear is occluded and the path to
the far ear is in back.

(4) Region b4: Neither ear is occluded (the source must be
in back).

(5) Region b5: Both ears are occluded and the path to the far
ear extends from front to back.

The equations are as follows:

ITD ¼ 2a=cð Þ h½ &; (b1)

ITD ¼ a=cð Þ 'p=2þ hþ hE þ cos h' hEð Þ
! "

; (b2)

ITD ¼ a=cð Þ 3p=2' h' hE þ cos h' hEð Þ
! "

; (b3)

ITD ¼ a=cð Þ cos h' hEð Þ ' cos hþ hEð Þ½ &; (b4)

ITD ¼ 2a=cð Þ p' hE½ &: (b5)

The results from the formulas, as determined by the
appropriate regions in Fig. 4(b), are illustrated in Fig. 5,
which shows the dependence of ITD on azimuth for five dif-
ferent ear angles, 90!, 110!, 130!, 150!, and 170!. To be
sure, an anatomy with the ears only 20! apart at the back of
the head (ear angle of 170!) is fanciful, but it is included for
mathematical completeness.

In the special case that ear angle hE is 90!, Fig. 4(b)
shows that the equations progress directly up the left edge
from region b2 to region b3, as expected from Fig. 4(a).
Then the plot of ITD as a function of azimuth in Fig. 5 is the
familiar simple case (incident plane waves and antipodal

ears). The peak of the ITD function is at a maximum for this
ear angle of 90!, here 654 ls. For a general ear angle, the
peak of the ITD occurs at an azimuth of h¼ 180' hE, where
the source direction is exactly opposite to the far ear angle.
At this point, the ITD function has a discontinuous deriva-
tive, indicating that something has gone wrong.

1. Correcting the Woodworth model

What is wrong with the Woodworth model is that it con-
siders only the path around one side of the head. Because of
the exponential decay of creeping waves, it may be a reason-
able assumption to ignore the longer path when the path
lengths are quite different. But when the far ear is nearly op-
posite to the source direction, the path in front of the head
and the path in back are about the same length. Then waves
along both paths contribute about equally. The thin solid line
in Fig. 1 for 20 kHz actually shows the interference between
the two waves. The interference can be understood quantita-
tively: The oscillations away from the peak at 90! have an
expected periodicity of one wavelength, or 17 mm. For a
deviation d (in radians) away from 90!, the path length dif-
ference is 2ad. The thin solid line appears to have a periodic-
ity of about 6!, corresponding to a path length difference of
18 mm, close to the expected value of 17 mm.

When both paths contribute about equally, it is wrong to
include only one path. A more logical treatment adds the
creeping waves around both sides of the head. It is not hard
to add the two creeping waves for the simplest case—inci-
dent plane wave and antipodal ears—if the two path lengths
are so similar that the two waves can be assumed to have
the same amplitude. The solution for h near 90! is no
longer ITD¼ (a/c)(hþ sin h). Instead the explicit linear de-
pendence on h is cancelled, and the ITD becomes
ITD¼ (a/c)(p/2þ sin h), a result with a continuous deriva-
tive at h¼p/2.

One can go further using the fact that the creeping wave
amplitudes decay exponentially with distance around the cir-
cumference as exp('h/d), where d is a constant of attenua-
tion. Then the solution to the sum of two creeping waves
leads to an ITD that depends on frequency, thereby losing
the important simplicity of the Woodworth model. However,
an expansion to lowest order in h' p/2 is again frequency
independent. In the limit that the incident angle approaches
90!, ITD¼ (a/c)[1þp/2' (2þ d)(h' p/2)2/(2d)]. Therefore
the top of the function is parabolic and no longer pointed.

C. Finite source distance

An alternative to the incident plane-wave is a point
source at a distance r from the center of the head as shown
in Fig. 3(c). The effects of finite source distance can be
expressed in terms of parameter q¼ r/a, which is the source
distance in units of the head radius (q) 1), and parameter
c¼ cos'1(a/r) (0* c* p/2). Figure 4(c) has labels for gen-
eral values of q and c, but the actual drawing corresponds to
the special case where q¼ 2 so that c¼ 60!. As shown in
Fig. 4(c), the finite distance causes a sixth region to drop
down from above h¼ 180!, with the following geometrical
description:

FIG. 5. ITD from the extended Woodworth formula as a function of plane-
wave source azimuth for five ear angles as shown. Parameters were
a¼ 87.5 mm, c¼ 344 000 mm/s.
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(1) Region c6: Both ears are occluded and the path to the far
ear begins with a source in back. The geometrical
descriptions of the other regions in Fig. 4(c) are the same
as for the corresponding regions in Fig. 4(b). There are
two intersections of interest in Fig. 4(c). The lower inter-
section (at h¼ 60") occurs for hE¼ (180þ c)/2. The
higher intersection (at h¼ 180") occurs for hE¼ 180$ c.
In general, these intersections occur at different values
of hE, but for the special case shown, where c¼ 60",
they happen to be the same.

The equations for ITDs are as follows:

ITD ¼ 2a=cð Þ h½ (; (c1)

ITD ¼ a=cð Þ½hþ hE $ cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 $ 1

p

$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 $ 2q cos h$ hEð Þ

p
(; (c2)

ITD ¼ a=cð Þ½2p$ c$ h$ hE þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 $ 1

p

$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 $ 2q cos h$ hEð Þ

p
(; (c3)

ITD ¼ a=cð Þ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 $ 2q cos hþ hEð Þ

p

$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 $ 2q cos h$ hEð Þ

p
(; (c4)

ITD ¼ 2a=cð Þ p$ hE½ (; (c5)

ITD ¼ 2a=cð Þ p$ hE½ (: (c6)

Although the equations for regions c5 and c6 are the
same, they apply to distinct geometrical situations and dis-
connected regions in Fig. 4. Region c1, with no distance de-
pendence, was identified by Woodworth (1938) as the
correct solution for a source close to the head but without
qualification or definition of “close.” Region c3 was identi-
fied by Molino (1973).2

D. Illustrations

The formulas, as determined by the appropriate regions,
are illustrated in Figs. 6 and 7 which, like Fig. 5, show the
dependence of ITD on azimuth for five different ear angles,
90", 110", 130", 150", and 170".

The condition q¼ 1 in Fig. 6, where the source is on the
surface of the head, leads to particular insight. In this case,
angle c becomes zero. Then region c4 disappears off the top
of Fig. 4 and regions c2 and c3 shrink to zero size. Then as h
increases from 0" to 180", the applicable regions are c1, c5,
and c6. For ear angles near 90", regions c1 and c5 dominate,
which is why Woodworth recommended Eq. (c1) for sources
close to the head. The flat regions in Fig. 6 (region c5) begin
and end at 180$ hE and hE.

The condition q¼ 2, where the source distance is twice
the head radius, corresponds to the particular conditions
used in Fig. 4(c). The ITD is shown in Fig. 7, where it is evi-
dent that the ITD function is a mixture of Fig. 6 (q¼ 1), with
long flat regions in the middle, and Fig. 5 (q¼1), with
smaller peaks and slowly dropping ITD as h approaches
180". Figure 7 shows that as a crude guide to intermediate
values of q, one can begin with the extreme values for q in
Figs. 5 and 6 and interpolate by eye.

As a check on the calculations, we considered the condi-
tion q¼ 1000, where the source is so far from the head that
the plane-wave approximation applies well. The calculation
from the formulas of Sec. III C agree with those from
Sec. III B, and Figs. 4(b) and 5 apply.

IV. SUMMARY

The Woodworth model and formula for the ITD around
a spherical head were compared with the exact solution for
the ITD from the diffraction formula. It was concluded that
for tonal or narrow-band sources, the low-frequency limit of
the diffraction formula is a better estimate of the ITD than
the Woodworth formula for frequencies below 0.8 kHz. The
Woodworth formula provides a better estimate for frequen-
cies above 1.5 kHz. Between 0.8 and 1.5 kHz, the relative
error depends on azimuth.

FIG. 6. ITD from the extended Woodworth formula for five ear angles as
shown for a source on the surface of the head, q¼ 1.

FIG. 7. ITD from the extended Woodworth formula for five ear angles as
shown for a source of sound located at twice the head radius, q¼ 2.
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The characteristic kink produced by the Woodworth for-
mula was shown to be an artifact without realistic physical
foundation. As a frequency-independent equation, the
Woodworth formula is valuable for broadband noise or
clicks or tones with high frequency. Using the Woodworth
model in those cases was made more practical by extending
it so that it applies to all possible ear angles and to all possi-
ble source distances.

The geometry in this article has mainly been confined to
sources in the azimuthal plane because of the emphasis on
general ear angle. By contrast, if the ear angle is limited to
90!, sources with an elevation out of the azimuthal plane are
easily tractable through cones of confusion. The ITDs are
the same for all sources located on the surface of a cone of
confusion, independent of source distance. The cones of con-
fusion are uniquely defined by a single angle, the lateral
angle (Morimoto and Aokata, 1984; Macpherson and
Middlebrooks, 2002), which is a function of both azimuth
and elevation. However, when the ear angle differs from
90!, the surfaces of constant ITD become complicated
objects. The description of these objects is beyond the scope
of this article and would be an interesting topic for future
mathematical research.
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1The formula has sometimes been called the “Woodworth-Schlosberg for-
mula” because it appeared in the 1954 and 1962 textbooks by those
authors (Woodworth and Schlosberg, 1954, 1962), e.g., Duda and Martens
(1998). In this article, we follow Green (1976) in calling it the
“Woodworth formula” because the formula appears in the 1938 textbook
by Woodworth alone.

2Apparently Molino (1973) interpreted the angle between the ears reported
by Hartley and Fry (1921) to mean that the angle around the front of the
head is smaller than the angle around the back. Therefore when Molino
derived an equation for a source in front of the listener, he produced Eq.
(c3). However, Molino’s interpretation was incorrect, and as can be seen
in Fig. 4(c), region c3 actually corresponds to a source in back.

Algazi, V. R., Avendano, C., and Duda, R. O. (2001). “Estimation of a
spherical head model from anthropometry,” J. Audio Eng. Soc. 49,
472–497.

Brown, C. P., and Duda, R. O. (1998). “A structural model for binaural
sound synthesis,” IEEE Trans. Speech Audio Process. 6, 476–488.

Brughera, A., Dunai, L., and Hartmann, W. M. (2013). “Human interaural
time difference thresholds for sine tones. The high-frequency limit,”
J. Acoust. Soc. Am. 133, 2839–2855.

Carlile, S. (1996). “The physical and psychophysical basis of sound local-
ization,” in Virtual Auditory Space: Generation and Applications, edited
by S. Carlile (R.G. Landes Co., Austin, TX), pp. 27–78.

Constan, Z. A., and Hartmann, W. M. (2003). “On the detection of disper-
sion in the head-related transfer function,” J. Acoust. Soc. Am. 114,
998–1008.

Duda, R. O., and Martens, W. L. (1998). “Range dependence of the response
of a spherical head model,” J. Acoust. Soc. Am. 104, 3048–3058.

Feddersen, W. E., Sandel, T. T., Teas, D. C., and Jeffress, L. A. (1957).
“Localization of high frequency tones,” J. Acoust. Soc. Am. 29, 988–991.

Green, D. M. (1976). An Introduction to Hearing (Erlbaum, Hillsdale, NJ),
pp. 202–203.

Hartley, R. V. L., and Fry, T. C. (1921). “The binaural localization of pure
tones,” Phys. Rev. 18, 431–442.

Hollien, H., and Rothman, H. (1971). “Underwater speech communication”
(United States Office of Naval Research, University of Florida,
Communication Sciences Laboratory).

Junger, M. C. and Feit, D. (1986). Sound, Structures and Their Interaction,
2nd ed. (MIT Press, Cambridge, MA) [reprinted by the Acoustical Society
of America, 1993, pp. 388–396].

Kuhn, G. F. (1977). “Model for the interaural time differences in the azi-
muthal plane,” J. Acoust. Soc. Am. 62, 157–167.

Macpherson, E. A., and Middlebrooks, J. C. (2002). “Listener weighting of
cues for lateral angle: The duplex theory of sound localization revisited,”
J. Acoust. Soc. Am. 111, 2219–2236.

Molino, J. (1973). “Perceiving the range of a sound source when the direc-
tion is known,” J. Acoust. Soc. Am. 53, 1301–1304.

Morimoto, M., and Aokata, H. (1984). “Localization cues of sound sources,
in the upper hemisphere,” J. Acoust. Soc. Jpn. 5, 165–173.

Nam, J., Abel, J. S., and Smith, J. O. (2008). “A method for estimating inter-
aural time difference for binaural synthesis,” in 125th Audio Engineering
Society Convention, San Francisco, p. 125.

Pierce, A. D. (1981). Acoustics: An Introduction to its Physical Principles
and Applications (McGraw-Hill, New York), p. 475.

Rayleigh, J. W. S. (1896). The Theory of Sound, Vol. II (Macmillan,
London), p. 272.

Rschevkin, S. N. (1963). A Course of Lectures on The Theory of
Sound, translation by P. E. Doak (Pergamon, McMillan, New York),
pp. 350–370.

Schnupp, J. W. H., Booth, J., and King, A. J. (2003). “Modeling individual
differences in ferret external ear transfer functions,” J. Acoust. Soc. Am.
113, 2021–2030.

Treeby, B. E., Paurobally, R. M., and Pan, J. (2007). “The effect of imped-
ance on interaural azimuth cues derived from a spherical head model,”
J. Acoust. Soc. Am. 121, 2217–2226.

Wells, M. J., and Ross, H. E. (1980). “Distortion and adaptation in
underwater sound localization,” Aviat. Space Environ. Med. 51(8),
767–774.

Woodworth, R. S. (1938). Experimental Psychology (Holt, New York), pp.
520–523.

Woodworth, R. S., and Schlosberg, H. (1954). Experimental Psychology
(Holt, Rinehard, and Winston, New York), pp. 349–361.

Woodworth, R. S., and Schlosberg, H. (1962). Experimental Psychology
(Holt, New York), pp. 348–361.

J. Acoust. Soc. Am., Vol. 135, No. 2, February 2014 N. L. Aaronson and W. M. Hartmann: Woodworth model 823


