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Problem description
A spherical microphone array is a scalable array with
a certain number of microphones, where the number of
microphones determines how directive the array can be
implemented. The microphone signals can be processed by
means of spherical harmonic (SH) modal functions, e.g. in
the Higher Order Ambisonics format. This format is easily
scalable between different array sizes, and sound fields
can easy be rotated in this format. One can also convert
between Higher Order Ambisonics and the binaural format
for headphone reproduction.

In this project, the student should study how signals
from a spherical microphone array, in the SH format, can
be used to create rotatable sound fields that can be repro-
duced through headphones, with a head-tracking device. A
real-time system shall, if possible, be implemented.
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Abstract

During the last decade, Higher Order Ambisonics has become a popular way of cap-
turing and reproducing sound fields. It can be combined with the theory of spherical
microphone arrays to record sound fields, and this three-dimensional audio format can
be reproduced with loudspeakers or headphones and even rotated around the listener.
A drawback is that near perfect reproduction is only possible inside a sphere of radius
r given by kr < N , where N is the Ambisonics order and k is the wavenumber.

In this thesis, the theory of spherical harmonics and Higher Order Ambisonics has
been reviewed and expanded, which serves as a foundation for a real-time system that
was implemented. This system can record signals from a commercial spherical mi-
crophone array, convert them to the Higher Order Ambisonics format, and reproduce
the sound field through headphones. To compensate for head motion, a head-tracking
device is used. The real-time system operates with a latency of around 95 milliseconds
between head motion and consequent sound field rotation.

Further, two new methods for improving the headphone reproduction were as-
sessed. These methods do not need to be applied in real-time, so no further system
resources are used. Simulations of headphone reproduction with Higher Order Am-
bisonics show that both methods yield quantitative improvements in binaural cues
such as the Interaural Level Difference, spectral cues and spectral coloration of the
sound field. Median error values are reduced as much as 50 % between 4 and 7 kHz.

The findings indicate that Higher Order Ambisonics reproduction over headphones
can be improved at frequencies above limit frequency given by kr < N , but these
findings need to be confirmed by subjective assessments, such as listening tests. The
work conducted in this thesis has also resulted in a comprehensive basis for further
development of a real-time three-dimensional audio reproduction system.
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Sammendrag

I løpet av det siste ti̊aret har Higher Order Ambisonics blitt en populær metode
for å gjøre opptak av lydfelt og gjenskape det for lytting. Metoden kan kombineres
med teori om kulemikrofoner for å gjøre opptak, og det tre-dimensjonale lydformatet
gjenskapes ved hjelp av høyttalere eller hodetelefoner. Det kan ogs̊a roteres rundt
lytteren. En ulempe er at tilnærmet perfekt reproduksjon kan kun gjøres innenfor en
sfære med radius r gitt av kr < N , hvor N er Ambisonics-ordenen og k er bølgetallet.

I denne masteroppgaven har teorien bak sfæriske harmoniske funksjoner og Higher
Order Ambisonics blitt gjennomg̊att og utvidet, og dette legger et grunnlag for et
sanntidssystem som ble implementert. Dette systemet kan ta opp lydsignaler fra en
kommersielt tilgjengelig kulemikrofon, konvertere de til Higher Order Ambisonics-
formatet, og spille av lydfeltet via hodetelefoner. En head-tracker ble brukt for å
kompensere for hodebevegelser. Sanntidssystemet fungerer med en forsinkelse p̊a
rundt 95 millisekunder mellom hodebevegelser og p̊afølgende rotasjon av lydfeltet.

Videre har to nye metoder for å forbedre gjengivelsen med hodetelefoner blitt
undersøkt. Disse metodene trenger ikke å kjøres i sanntid, s̊a det er ikke behov for
mer systemressurser. Simuleringer av Higher Order Ambisonics-reproduksjon med
hodetelefoner viser at begge metodene gir kvantitative forbedringer i binaurale egen-
skaper slik som niv̊aforskjeller mellom ørene, spektrale mønstre og spektral farging av
lydfeltet. Medianverdien av feilen ble redusert med opptil 50 % mellom 4 og 7 kHz.

Funnene indikerer at Higher Order Ambisonics-reproduksjon med hodetelefoner
kan forbedres for frekvenser høyere enn grensefrekvensen gitt av kr < N , men disse
funnene må bekreftes av subjektive eksperimenter, for eksempel lytteforsøk. Arbeidet
som har blitt gjort i denne masteroppgaven har ogs̊a resultert i et solid grunnlag for
videreutvikling av et sanntids tredimensjonalt lydgjengivelsessystem.
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CHAPTER 1

Introduction

3D sound is a continuously evolving research field in acoustics. During the past
hundred years or so, scientists have studied how humans perceive sound sources in
space with various experiments. Since the birth of modern stereophonic sound in the
1930s and its introduction on LP records in the late 1950s, 3D audio reproduction
has evolved to comprise tenths of loudspeakers in today’s movie theatres. On the
contrary, personal sound systems have not had the same evolution, and still most
sound reproduction is done with stereo sound or simple surround systems.

Why do we want 3D sound? Many people cannot really relate to this term, because
terms like stereo and surround is used more frequently to describe spatial audio.
So, 3D sound is merely a collection of reproduction techniques, which describes the
ability for a sound reproduction system to render audio sources with spatial content.
Countless experiments have shown that our sensory experiences are well affected by
the spatial content of the sound. It catches our attention and helps us to distinguish
between sources. Thus, when pursuing a realistic and sensuous experience, spatial
audio is an important ingredient. And, recent development in 3D Virtual Reality
(VR) visualisation addresses the need for improved 3D audio.

In addition to VR, other applications of spatial audio include movie theatres,
spatial music listening, teleconferencing, and even communication in noisy, hazardous
environments. The latter two relies on the fact that our ability to understand speech
is improved by spatial separation of the speech and other noise sources.

When it comes to full-3D audio reproduction, three primary methods have been
established in the last decades, namely Wave Field Synthesis (WFS) [1], Vector Based
Amplitude Panning (VBAP) [2] and Higher Order Ambisonics (HOA) [3]. WFS relies
on Huygens’ principle that a wave front can be approximated with a distribution of
secondary sources. VBAP is a generalisation of stereo panning methods, with a two-
or three-dimensional loudspeaker setup. Ambisonics, introduced in its simplest form
by Michael Gerzon in the 1970s, decomposes the sound field into a modal structure
and seeks to reproduce these modes at the listener’s position, called the ”sweet spot”.
Ambisonics has further been developed to include higher order modes, which is HOA,
based on a spherical harmonics decomposition of the sound field. Ideally, an infinite
order is needed to perfectly reconstruct a sound field, but in practice, as in many
cases, a finite order must be used. This is due to a restricted number of loudspeakers.

Both WFS and HOA, along with alternative methods, suffer from the fact that

1



CHAPTER 1. INTRODUCTION

a large number of loudspeakers are required to provide high spatial resolution. This
drawback can be overcome by simulating the loudspeaker signals with headphones,
but that introduces further complications as will be discussed in this thesis.

1.1 Motivation
With HOA, one can obtain near perfect sound field reconstruction inside a sphere lim-
ited by the radius r = N/k, where N is the Ambisonics order and k is the wavenumber.
At least (N + 1)2 loudspeakers are required for this. The quadratic relation between
the radius and loudspeaker count is costly, especially if more than one listener is
present. As an example, for decent reproduction below 5 kHz, at least 100 loudspeak-
ers are required for one listener. In addition, this only applies for the ”sweet spot” in
the centre of the array.

A possible solution suggested by SINTEF ICT1 is to convert the HOA signals to
the binaural format, so the sound reproduction can be done through headphones or
earplugs. Head-Related Transfer Functions (HRTFs) can be constructed or measured
to relate a sound source with the sound pressure at the ears, thus facilitating binaural
synthesis, or auralization2, of spatial sound with headphones.

This combination of HOA and auralization would provide a very convenient 3D
audio format. The strength of HOA is that it is independent of the loudspeaker
geometry and source positions, so it is very flexible. In addition, it is scalable in
terms of transmission or storage. Auralization is cheap in terms of hardware and
good quality can be obtained if the HRTFs are a good match to the listener.

So far, relatively few studies have been performed on how HOA can be combined
with auralization. Though the main concepts have been previously described, few
have studied how the objective and perceived quality is, and very few suggestions for
improving such a system has been found in the literature.

In addition, the ongoing research on HOA in multiple scientific communities indi-
cates that there is still need for improvement and evaluation of the method.

1.2 Previous work
While original 4-channel Ambisonics dates back to the 1970s [5, 6], HOA was further
developed by Jérôme Daniel et al. [7] in the late 1990s and early 2000s, based on
spherical harmonics. He and his colleagues proposed alternative decoding methods [3],
expanded the theory with spherical microphone array processing [8–11] and introduced
near-field coding [12, 13]. Their work constitutes a significant part of the knowledge
of HOA today.

Simultaneously, loudspeaker reproduction of sound fields was studied by Ward and
Abhayapala [14], by using an array of loudspeakers to construct a plane wave source.
3D loudspeaker reproduction techniques based on HOA (and WFS) has further been

1www.sintef.no
2Auralization was introduced by Kleiner et al. [4], and aims to ”recreate the aural impression of

the acoustic characteristics of a space”.

2



1.2. PREVIOUS WORK

studied in detail by Ahrens and Spors [15–17], often with a more theoretical approach.
Spherical microphone array processing became popular following Meyer and Elko’s

paper [18], which resulted in the commercial Eigenmike® microphone. Rafaely et al.
have studied such arrays in depth [19–25], in particular with respect to beamforming
applications and error analysis. Advanced beamforming methods were further de-
veloped by Sun [26], describing the ability to construct more advanced beamforming
patterns. Duraiswami et al. has also studied such arrays with attention to micro-
phone positioning and array robustness [27–30], but also different shapes such as
rigid hemispherical microphone arrays [31].

For readers with little experience on the subject, a good review on 3D sound field
recording and reproduction was written by Poletti [32]. Modal array processing is
thoroughly covered in the book by Teutsch [33].

Previous work on binaural reproduction with HOA is highly relevant for this study.
Landone and Sandler [34] first introduced binaural processing of Ambisonic sound
fields, for the purpose of evaluating multi-channel systems. However, the decoding of
Ambisonic signals to virtual loudspeakers convolved with HRTFs was first introduced
by Noistering et al. [35], further expanded with a spherical microphone array by Du-
raiswami et al. [36, 37], claiming that the results sounded convincing. Menzies and
Ai-Akaidi [38] showed that binaural rendering of near field sources might suffer from
errors due to scattering from objects (i.e. the listener’s body) outside the region of
validity in HOA. Further developments included conversion of HRTFs to the spher-
ical harmonics domain (Duraiswami et al., [39], Pollow et al. [40]), which simplifies
binaural HOA rendering and facilitates calculation of HRTFs at arbitrary points in
space.

Evaluation of HOA reproduction has mainly been focused on loudspeaker systems.
Several approaches have been taken, for example localisation accuracy [41, 42] or
spectral impairment [43]. Recently, binaural HOA has also been evaluated, mainly in
terms of localisation [44,45]. Shabtai and Rafaely [46] also studied speech intelligibility
with a binaural beamforming method based on a spherical microphone array.

Few studies have been conducted seeking to evaluate binaural cues such as the In-
teraural Time/Level Difference (ITD/ILD). Epain et al. [47] evaluated a 32-loudspeaker
array with an acoustic manikin, focusing on ILD and ITD, also with out-of-centre head
locations. They found that the broadband ITD was well preserved below 2 kHz, while
the ILD and spectral cues had significant errors leading to worse localisation. Very
recently, Clapp et al. [48] studied binaural cues, to evaluate a spherical microphone
array perceptually. Bertet et al. [42] also touched this topic, comparing various HOA
systems with a combined ILD and ITD localisation model.

Most recently, binaural HOA reproduction has been evaluated in terms of more
subjective measures with listening tests. Sheaffer, Rafaely and Villeval [49] studied
externalisation, localisation blur and timbre, as well as suggesting a timbre correc-
tion filter to compensate for the high frequency loss resulting from a finite order N .
Preliminary results show that this compensation yields a better subjective experience.
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CHAPTER 1. INTRODUCTION

1.3 Problem and purpose
To evaluate a binaural HOA reproduction system, it is essential to incorporate the
listener’s head movements into the auralization process. Thus, a real-time system
with a head-tracking device is needed. The problem formulation is then divided in
two parts:

• A real-time system for binaural reproduction of HOA is needed to do subjective
tests. Thus, such a system shall be implemented. A spherical microphone array
will be used to obtain the HOA signals in a real sound field. The system must
be able to compensate for head movements with a head-tracker.

• The quality of reproduction will be evaluated with focus on the binaural cues
that constitute spatial hearing. This is done by evaluating objective measures
such as interaural differences and the spectral behaviour of the sound field. In
addition, possible improvements of the reproduction technique are investigated.

A purpose that arose throughout the thesis work was to provide a consistent the-
oretical framework for the HOA method and the addition of auralization. Many
previous studies are rather limited on this end, partly because different authors use
different conventions, and often only specific parts of the theory are addressed. The
purpose is not to do a complete theoretical review of HOA, but to provide the neces-
sary theory and tools to implement and analyse the system in question. Further work
with the binaural HOA project will also benefit from this documentation.

1.4 Contribution
Though the main objectives of this project are to implement a binaural HOA rendering
system and evaluate its performance, the work contains some new theory, insight and
results.

Firstly, the study connects HOA sound field capture to binaural reproduction both
in terms of implementation, but also in terms of evaluating the performance. To the
author’s knowledge, the full chain from a spherical microphone array to a binaural
reproduction system has not previously been thoroughly covered. Thus, limitations
on both the recording and reproduction side can be discussed and compared.

In addition, further insight has been gained on the effects of truncation error. A
new formula for the normalised truncation error on a rigid sphere has been derived.
The truncation error affects binaural cues, which has received little attention in the
literature. New insights on how these errors affect localisation and audio quality has
been obtained with objective, numerical measures.

Finally, two new methods for improving the binaural reproduction have been de-
veloped. By manipulating the phase response of the HRTF database, high frequency
reproduction is improved only at the cost of phase response. However, the current es-
tablished psychoacoustic models allow a degraded phase response at high frequencies
since the localisation is mainly influenced by level differences in this frequency range.
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1.5 Outline
Chapter 2 covers the theoretical framework behind HOA, starting with spherical
acoustics. Then, the HOA encoding process is covered, including spherical micro-
phone arrays and virtual sources. Sound field rotation is briefly covered. Further,
methods for decoding the HOA signals to loudspeakers and headphones are presented,
and the main error sources are addressed. Finally, the basics of binaural hearing are
revisited, and new correction methods for improving the binaural cues are proposed.

Chapter 3 goes through the real-time implementation, including hardware and soft-
ware choices, and a detailed description of the system. Processing algorithms for the
encoding, motion handling and binaural synthesis are discussed. A brief overview of
system requirements and performance is presented, along with a few key numbers on
resource use and latency.

Chapter 4 presents the numerical results from various simulations of the HOA sys-
tem. This includes spherical microphone analysis in terms of aliasing and noise,
truncation error and binaural representation error. The ILD, ITD and spectral cues
are investigated, and the proposed correction methods are evaluated.

Chapter 5 discusses the implementation, quantitative results and implications. Some
remarks are made with respect to further development and evaluation of the system.

Chapter 6 sums up the main findings and implications.

Appendix A contains a derivation of the normalised truncation error on a rigid
sphere.

Appendix B contains an overview of the MATLAB code, and the most important
scripts and functions that were developed.

Attachments (zip-file) contain all the MATLAB scripts and necessary data files
for the real-time system and analysis. Psychophysics Toolbox has to be downloaded
separately. Sample audio files were not included due to file size limitations.
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CHAPTER 2

Theoretical framework

This chapter seeks to give the reader a thorough introduction to Higher Order Am-
bisonics (HOA). The basics of spherical acoustics are revisited, and it is shown how
this is used to represent 3D sound with HOA. Encoding is covered, both from virtual
sources and spherical microphone arrays. It is shown how the HOA signals (or chan-
nels) can be decoded with a loudspeaker array or binaurally with headphones. In
addition, some basic theory of binaural hearing is presented. Finally, a novel method
for improving the binaural HOA reproduction at high frequencies is introduced, taking
into account psychoacoustic features of binaural listening.

There are two main goals with this chapter. The first one is to provide a framework
for the reader that has general knowledge of acoustics, but limited knowledge of HOA.
The second is to provide a complete theoretical description of a HOA system that can
be used in future research and development.

2.1 Spherical acoustics
Spherical acoustics describes the treatment of acoustics in spherical geometries. The
wave equation can be solved in the Cartesian, cylindrical or spherical coordinate
system. With spherical geometries, the latter is an obvious choice, and a sound field
can be described in a very elegant way with Spherical Harmonics. In the following,
decomposition of sound fields in the spherical coordinate system is considered.

For a more thorough description of spherical acoustics, the reader is referred to
Williams [50].

2.1.1 Spherical coordinates
A point (x, y, z) in spherical coordinates can be described as a vector with length r,
elevation θ and azimuth φ. Figure 2.1 shows the classical definition1.

The relation between the Cartesian coordinate system and the classical spherical

1Other definitions include swapping θ and φ, or defining θ as the angle from the xy-plane.
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z

y

x

p(r, θ, φ)
θ

φ

Figure 2.1: Definition of the spherical coordinate system used in this study.

coordinate system is

x = r cosφ sin θ
y = r sinφ sin θ (2.1)
z = r cos θ

so a coordinate transformation can easily be done.

2.1.2 Spherical harmonics
The sound field will be decomposed into frequency, radial and angular functions.
Spherical harmonics constitute the angular functions. Any arbitrary, square integrable
function on a sphere can be described as

f(θ, φ) =
∞∑
n=0

n∑
m=−n

amn Y
m
n (θ, φ) (2.2)

where amn are complex coefficients and Y m
n are the complex spherical harmonics defined

as:

Y m
n (θ, φ) =

√√√√2n+ 1
4π

(n−m)!
(n+m)!P

m
n (cos θ)eimφ (2.3)

Here, Pm
n (x) are the associated Legendre functions [50, pp. 187]. If the function

f(θ, φ) is known, the complex coefficients can be found by

amn =
∫ 2π

0

∫ π

0
Y m
n (θ, φ)∗f(θ, φ) sin θ dθ dφ (2.4)

Different definitions of the spherical harmonics exist, and the real-valued spherical
harmonics [8] are of particular interest:

Υm
n (θ, φ) =

√√√√(2n+ 1)(2− δ0m)(n−m)!
(n+m)!P

m
n (cos θ)×


cos(mφ) m > 0
1 m = 0
sin(mφ) m < 0

(2.5)
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δnm is the Kronecker delta function. The real-valued definition is practical when
dealing with real-valued audio signals. For reference, the relation between the complex
definition in Equation (2.3) and Daniel’s real definition in Equation (2.5) is

Υm
n =


√

2π(Y m
n + Y m∗

n ) m > 0√
4πY m

n m = 0
−i
√

2π(Y |m|n − Y |m|∗n ) m < 0
(2.6)

Two important properties of the spherical harmonics are the orthonormality property∫ 2π

0

∫ π

0
Y m
n (θ, φ)Y m′

n′ (θ, φ) sin θ dθ dφ = δnn′δmm′ (2.7)

which means that they form a complete set, and the addition theorem [14], which
states that:

n∑
m=−n

Y m
n (θ1, φ1)Y m

n (θ2, φ2)∗ = 2n+ 1
4π P 0

n(cos Ω) (2.8)

where Ω is the central angle between (θ1, φ1) and (θ2, φ2). This is particularly inter-
esting in the axisymmetric case (an acoustic wave arriving along the z-axis), where Ω
reduces to θ.

2.1.3 Directivity patterns of the spherical harmonics
To understand how the spherical harmonics work and how the sound field can be
represented in the spherical harmonics domain, one can look at the directivity plots of
the first few spherical harmonics. Figure 2.2 show the magnitude of the real spherical
harmonics up to order 4. The directivity plots can be interpreted as a monopole
(omnidirectional) element (Y 0

0 ), dipole elements (Y m
1 ), quadrupole elements (Y m

2 ) and
so on. Thus, the spherical harmonics components of a wave field around the origin
can be interpreted as signals corresponding to an infinite number of microphones with
different directivities.

2.1.4 Solution of the wave equation in spherical coordinates
The linear, homogeneous wave equation in spherical coordinates is given by

1
r2

∂

∂r

(
r2∂p

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂p

∂θ

)
+ 1
r2 sin2 θ

∂2p

∂φ2 −
1
c2
∂2p

∂t2
= 0 (2.9)

where c is the speed of sound. A solution can be found by separating the variables
such that:

p(r, θ, φ, t) = R(r)Θ(θ)Φ(φ)T (t) (2.10)
A complete derivation of how to solve the wave equation in spherical coordinates is
not presented here but the result is given. Any solution can be written as [50, pp.
186]

p(r, θ, φ, ω) =
∞∑
n=0

n∑
m=−n

(Amn jn(kr) +Bm
n yn(kr))Y m

n (θ, φ)e−iωt (2.11a)

p(r, θ, φ, ω) =
∞∑
n=0

n∑
m=−n

(Cm
n h

(1)
n (kr) +Dm

n h
(2)
n (kr))Y m

n (θ, φ)e−iωt (2.11b)
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Figure 2.2: Directivity patterns of the real spherical harmonics up to order 4. Red colours
are positive amplitudes and blue colours are negative amplitudes.

for standing wave and traveling wave solutions, respectively. In the following, the
time-dependent term e−iωt will be omitted for simplicity. The coefficients Amn , Bm

n , C
m
n

and Dm
n are generally frequency-dependent functions and can be regarded as a kind

of spatial Fourier Transform coefficients in the spherical domain. jn, yn, h(1)
n and h(2)

n

are radial functions, which represent the radial dependency of the wave field. The
spherical Hankel functions of the first and second kind are defined as

h(1)
n (x) =

√
π

2x
(
Jn+1/2(x) + iYn+1/2(x)

)
∝ eix (2.12a)

h(2)
n (x) =

√
π

2x
(
Jn+1/2(x)− iYn+1/2(x)

)
∝ e−ix (2.12b)

that represent outgoing and incoming waves, respectively. Whether we keep one or
both of these terms depends on the specific acoustic problem. Jn and Yn are the
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Bessel functions of the first and second kind. The spherical Bessel functions

jn(x) =
√
π

2xJn+1/2(x) (2.13a)

yn(x) =
√
π

2xYn+1/2(x) (2.13b)

represent the standing wave solutions, but the first kind is particularly interesting: A
general solution for an interior problem (all sources are placed outside a sphere region
of validity, see Figure 2.10) can be written as:

p(r, θ, φ, ω) =
∞∑
n=0

n∑
m=−n

Amn (ω)jn(kr)Y m
n (θ, φ) (2.14)

This expression is very useful when capturing a sound field in a limited area with
a spherical microphone array, or reconstructing such a sound field with an array of
loudspeakers.

2.1.5 Plane wave representation with spherical harmonics
Equation (2.14) must be able to express a unit magnitude plane wave traveling with
the direction (θi, φi). Williams [50, pp. 227] gives the solution:

p(r, k, θ, φ) = 4π
∞∑
n=0

injn(kr)
n∑

m=−n
Y m
n (θ, φ)Y m

n (θi, φi)∗ (2.15)

For the simpler, axisymmetric case, where the wave arrives from the negative z-
direction, the equation can be simplified with Equation (2.8) to form:

p(r, k, θ, φ) =
∞∑
n=0

in(2n+ 1)jn(kr)P 0
n(cos θ) (2.16)

2.1.6 Scattering from a rigid sphere
A spherical microphone array can be constructed as an array of pressure sensors in free
space, or as an array of sensors mounted at a rigid sphere [8–11,18]. In addition, the
introduction of a human listener in the sound field will scatter the sound field. In some
cases, the head can be approximated by a rigid spherical scatterer. Teutsch [33, pp.
39] gives an expression for the total sound field for a plane wave traveling with the
direction (θi, φi), scattered by a rigid sphere of radius R centred in the origin (see
Figure 2.3):

ptot(r, θ, φ, ω) = 4π
∞∑
n=0

in
[
jn(kr)− j′n(kR)hn(kr)

h′n(kR)

]
n∑

m=−n
Y m
n (θ, φ), Y m

n (θi, φi)∗ (2.17)

This equation is also derived in Appendix A. Here j′n and h′n are the first derivatives
of the spherical Bessel and Hankel functions of the first kind. For simplicity, the
Wronsikan expression can be used to obtain [32][

jn(kr)− j′n(kR)hn(kr)
h′n(kR)

]
= i

(kR)2h′n(kR) (2.18)

when r = R, i.e. a simpler expression for the pressure at the rigid sphere surface.
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x

~pi

ps

R

Figure 2.3: A plane wave ~pi arriving from the positive x-direction (θi, φi) = (π/2, π),
along with the scattered pressure ps from a rigid sphere with radius R.

2.2 Higher Order Ambisonics
Ambisonics was introduced by Gerzon [5,6] in the 1970s. He experimented with plac-
ing four cardioid microphones in a tetrahedral formation, to produce a four-channel
representation of the spatial audio, consisting of the monopole channel (W) and dipole
element channels (X,Y,Z) in Figure 2.2. The WXYZ configuration, called B-format,
is Ambisonics in its simplest form. This corresponds to truncating the series in Equa-
tion (2.14) to order N = 1, and thus a lot of spatial information is lost. Higher Order
Ambisonics is the method of representing the sound field with a higher truncation
order N > 1. This requires (N + 1)2 HOA signals, as each order N contains 2N + 1
signals, which can be represented in either the frequency- or time-domain, and, if
needed, compressed to reduce spatial redundancy [51,52].

There are two methods for constructing a HOA signal:

1. The sound field from a virtual source placed at a point in space (r, θ, φ) is
encoded directly with spherical harmonics. Both plane-wave (far field) and
spherical-wave (near field) sources can be encoded.

2. The sound field is recorded by a microphone array centred in the origin of
the coordinate system. Typically, a spherical microphone array is used, with
pressure sensors mounted on a spherical grid or on a rigid sphere. The array
output is then encoded to the spherical harmonics domain.

The (N + 1)2 HOA signals can then be transmitted or stored in a format which
is very flexible. A sound field can be easily rotated around the origin [23], and
scaled down to a lower order N ′. This only reduces the spatial information at high
frequencies, which may not be needed for some applications.

On the reproduction side, the sound field can be reproduced with a loudspeaker ar-
ray distributed uniformly on a sphere centered at the listening position. This requires
at least (N+1)2 loudspeakers [8,14]. Ideally, the loudspeakers should reproduce plane
waves, but the fact that loudspeakers radiate spherical waves will cause a slight error.
This can be corrected for using Daniel’s Near Field Compensation (NFC) [12,13].

HOA can either be formulated in 2D or 3D. The 2D formulation uses cylindrical
coordinates [8], and comprises spatial information in the horizontal plane. Thus,
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spatial audio can be reproduced in the 360◦ horizontal plane, but with no elevation
cues. In practice, 2D Ambisonics is realised with a circular loudspeaker array around
the listener.

As the HOA representation order increases, the amount of spatial information
increases. The reconstruction error arising from a finite number of loudspeakers (and
thus HOA signal components) will increase with the distance from the origin. Near
perfect reconstruction is only possible inside a sphere with radius r ≤ N/k, as will be
shown later in this chapter.

2.2.1 Encoding - virtual sources
Sound sources can be encoded in the HOA format when the source position and di-
rectivity is known. A plane wave arriving from a direction (θS, φS) can be represented
with Equation (2.15). Thus, the complex coefficients in Equation (2.14) are:

Amn = 4πinY m
n (θS, φS) (2.19)

Daniel’s HOA formulation [8] with real spherical harmonics uses the coefficient nota-
tion Bm

n instead of Amn (do not confuse with Bm
n in equation (2.11a)). From here, this

notation convention will be used. Thus, the encoding is simplified to

B = SY (2.20)

where S is the source signal, Y is the vector of real spherical harmonics Υm
n and B

is the vector of real Ambisonics signals Bm
n . In practice, B is a matrix of (N + 1)2

digital signals of length L. According to Daniel’s formulation, we can now describe
the sound field with a truncated series

p̃(r, θ, φ, ω) =
N∑
n=0

n∑
m=−n

injn(kr)Bm
n (ω)Υm

n (θ, φ) (2.21)

which can be expressed similarly with complex spherical harmonics as in Equation
(2.14). Using the complex definition will result in complex Ambisonic signals, but
due to the relation in Equation (2.5) we can easily retrieve the real Ambisonic signals.
Only the complex Ambisonic signals with m ≥ 0 need to be transmitted.

To encode near-field sources, the sound field from a monopole must be expressed
with a spherical harmonics expansion. Details are not shown here, but Daniel [12]
provides a simple expression to include the distance information in the HOA signals.
A source at a distance ρ can be encoded as:

Bm
n = SFn(ρ, ω)Υm

n (θS, φS) (2.22)

where the frequency-dependent functions Fn are defined as:

Fn(ρ, ω) =
n∑

m=0

(n+m)!
(n−m)!m!

(
−ic
2ωρ

)m
(2.23)

Note that the 1/ρ distance attenuation and air absorption must be modelled sepa-
rately. These functions affect mainly the low frequencies and can be implemented
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as time- or frequency-domain filters. However, the filters cause excessive amplifica-
tion at low frequencies which is impractical in a filter implementation. This is solved
by applying a correction filter taking the loudspeaker distance on the reproduction
side into account. Thus, a realisable filter (replacing Fn in Equation (2.22)) can be
expressed as

Hn(ω) = Fn(ρ, ω)
Fn(R,ω) (2.24)

where R is the reproduction loudspeaker distance.
Figure 2.4 shows the correction filters for an example where the source is to be

located 1m from the listener, and the loudspeakers are located 3m away. The main
effects of the filters are low-frequency amplification or attenuation, for close sources
and loudspeakers, respectively. However, it will be shown later that particularly the
high-order Ambisonic signals will need to be high-passed anyway, minimising the
result of near field effects.
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Figure 2.4: Magnitude (top) and phase (bottom) of the NFC filters. Loudspeaker filters
1/Fn(R,ω) (solid lines), R = 3m, and source filters Fn(ρ, ω) (dashed lines), ρ = 1m, orders
0 through 4.

2.2.2 Encoding - sound field recording
The other way to encode a HOA signal is to capture a real sound field with a mi-
crophone array. Due to the spherical harmonics decomposition of the sound field, a
spherical microphone array is the most convenient configuration. With an array that
has Q > (N + 1)2 sensors, with radius R, it is possible to estimate the Ambisonics
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signals up to order N . There are two ways to do this, either by direct integration
(DI) or by the least-squares method [39]. With the DI method, one pre-defines a
quadrature for the sphere and uses Equation (2.4) to estimate the coefficients such
that

Bm
n Wn(kR) =

∫
S
p(R, θ, φ)Υm

n (θ, φ)∗ dS (2.25)

where Wn(kR) is a radial function, depending on the array geometry. S is the sphere
surface. The integral has to be approximated by numerical integration, which intro-
duces approximation errors. With the least squares method discussed in the following,
these errors are minimised.

The sound field can be sampled on a spherical surface, which can be regarded as
a sampling of the left side of Equation (2.14). The pressure on a microphone q placed
on a sphere can generally be described as [10]

pq(ω) =
N∑
n=0

n∑
m=−n

Wn(kR)Bm
n (ω)Υm

n (θq, φq) (2.26)

In matrix form we obtain:
p = YWB (2.27)

where the sensor pressures are defined in the vector

p = [p1, p2, p3 .. pQ]T , (2.28)

the spherical harmonics matrix,

Y =


Υ0

0(θ1, φ1) Υ−1
1 (θ1, φ1) Υ0

1(θ1, φ1) Υ1
1(θ1, φ1) .. ΥN

N(θ1, φ1)
Υ0

0(θ2, φ2) Υ−1
1 (θ2, φ2) Υ0

1(θ2, φ2) Υ1
1(θ2, φ2) .. ΥN

N(θ2, φ2)
: : : : : :

Υ0
0(θQ, φQ) Υ−1

1 (θQ, φQ) Υ0
1(θQ, φQ) Υ1

1(θQ, φQ) .. ΥN
N(θQ, φQ)

 ,
(2.29)

and the radial function matrix is defined as a ”pseudo-diagonal” matrix:

W = pdiag[Wn(kR)] ≡


W0(kR) 0 0 .. 0

0 W1(kR) 0 .. 0
0 0 W1(kR) .. 0
: : : : :
0 0 0 0 WN(kR)

 (2.30)

Note that each element Wn is repeated 2n+1 times in the diagonal matrix. Also, note
that the real spherical harmonics matrix is denoted Y, but in principle this could be
complex spherical harmonics as well, yielding complex Ambisonics signals. Finally,
the Ambisonics signals matrix is defined as

B = [B0
0 , B

−1
1 , B0

1 B
1
1 .. B

N
N ]T (2.31)

Also, note that the order of spherical harmonics and Ambisonics coefficients runs from
small to large values of m, from small to large order. This is a matter of convention,
but as long as consistency is maintained, any convention could be used. Different
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authors may use different conventions, so this is important to keep in mind when
working with Ambisonics signals.

We want to determine B. Equation (2.26) implies that the sound field represen-
tation is truncated to order N . Thus the number of microphones must be larger than
the number of coefficients in B, i.e. (N + 1)2. If not, the system is underdetermined
and has no unique solution. If Q = (N + 1)2, the system can be easily solved by mul-
tiplying both sides with the inverse of WY. However, if Q > (N + 1)2, the system is
overdetermined and the solution must be determined by a least squares solution [10],
which results in

B̃ = W−1(YTY)−1YTp (2.32)

The matrix (YTY)−1YT is the Moorse-Penrose matrix pinv(Y), also called the pseu-
doinverse of Y. Thus we obtain an estimation of the HOA signals with two sim-
ple operations: Multiplication of the microphone signals with an encoding matrix
E = pinv(Y) and filtering the HOA components of order n with the inverse radial
filter 1/Wn(kR):

B̃ = pdiag[1/Wn(kR)]Ep (2.33)

Note that if the loudspeakers are placed irregularly on the sphere, Y will be ill-
conditioned and the solution is prone to numerical errors (see Section 3.6). The
same will happen if one tries to estimate an encoding matrix where the number of
microphones is smaller than (N + 1)2. Thus, for any new sampling scheme on the
sphere, the condition number should be calculated to avoid ill-conditioning.

Figure 2.5 shows the encoding operation with a matrix mixer and inverse radial
filters. The filters will depend on the array configuration. If the microphones are
omnidirectional and placed in free space, the filters simply reduce to the spherical
Bessel functions injn(kr)(Equation (2.13a)). However, these functions have nulls at
certain frequencies, as seen in Figure 2.6. This poses problems when designing the
inverse filters in Equation (2.33), as they will create infinite amplification at the nulls.
This is not possible in practice and noise will also be a problem.
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Microphones Encoding
matrix

E

n = N

...
n = 3

n = 2

n = 1

W −1
N

W −1
2

W −1
1

W −1
0

Inverse
radial filters HOA channels

Ch. N2 + 1
... (N + 1)2

Ch. 5 ... 9

Ch. 2 ... 4

Ch. 1

Figure 2.5: Encoding operation for a spherical microphone array with Q sensors, resulting
in a HOA representation of order N and (N + 1)2 channels. Thick lines are groups of
channels running through the same filters W−1

n (one filter for each channel).
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Figure 2.6: Inverse spherical Bessel functions of order 0 to 4. Due to the nulls in the
Bessel functions, the inverse goes to infinity at certain points.

By using directional microphones by mounting them on a hard sphere, we avoid
this problem. It is also possible to use e.g. cardioid microphones [8]. The weighting
filters are then given by Equations (2.17)-(2.18):

Wn(kR) = in+1

(kR)2h′n(kR) (2.34)

The inverse of these filters are easier to realise than the inverse (reciprocal) spherical
Bessel functions because the absence of nulls in the radial filters, and the magnitude
is plotted in Figure 2.7. However, for orders N ≥ 1, they lead to high amplification
at low frequencies that results in amplification of self-noise and microphone position
errors [10]. This is because the wavelength is much larger than the array dimensions,
and trying to capture the spatial information is analogous to finding the derivative
of the wave field. The derivative is very small at low frequencies, so a noise blow-up
is expected. At high frequencies, the inverse filters follow the kR line asymptotically
due to screening from the sphere. This is because the large argument limit of h′n(x)
is proportional to eix/x, and thus Wn(kR) ∝ 1/kR.
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n = 0
n = 1
n = 2
n = 3
n = 4
kR

Figure 2.7: Inverse radial filters, along with the high frequency asymptote kR.

To avoid this noise blow-up at low frequencies, several methods are suggested in the
literature: In [10] a Tikhonov regularisation filter is applied, from a maximal sensor
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noise amplification criterion. These are in practice high-pass filters at low frequencies.
In [12], the compensation for a finite loudspeaker (Equation (2.24)) distance is shown
to counteract the excessive amplification. In [13], high-pass filters with at least a slope
of 6 dB/octave/order are applied to compensate for the slope. Figure 2.8 shows the
realisable encoder with high-pass filters.
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Inverse
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High-pass
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Ch. N2 + 1
... (N + 1)2

Ch. 5 ... 9
Ch. 2 ... 4

Ch. 1

Figure 2.8: Encoding operation for a spherical microphone array, with high-pass filters to
avoid noise blow-up.

The requirements for the high-pass filters depends on the microphone Signal-to-
Noise Ratio and the desired reproduction accuracy at low frequencies. Requirements
for the filters will be discussed in Section 2.3.1.

2.2.3 Sound field rotation
In many cases, it may be necessary to rotate the sound field with an arbitrary rotation
operation. Such cases can be: Combining (mixing) several HOA sound fields, reposi-
tioning already encoded virtual sources, moving sources, compensating for a moving
reproduction system (e.g. binaural reproduction with head-tracking). There are sev-
eral ways to mathematically describe a rotation, but a common property is that the
rotation of an object has three degrees of freedom. Thus it can be represented by
three scalar values, much like a translation operation.

The common way to rotate a spherical harmonics representation such as a HOA
signal, is with a rotation matrix R defined from three Euler angles (α, β, γ):

Brot = RB (2.35)

We now define the 3-2-3 convention Euler angles as 1) rotate α radians around the
z-axis, 2) rotate β radians around the new y-axis and 3) rotate γ radians around the
new z-axis. The operation is shown in Figure 2.9.

The rotation matrix is a block-diagonal matrix consisting of 2n+1×2n+1-matrices
for each order n = 0..N :

R =


D0 .. .. ..
: D1 : :
: : : :
: : : DN

 (2.36)
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Figure 2.9: Rotation of an object by the 3-2-3 Euler angles (α, β, γ)

For the complex spherical harmonics, each matrix consist of elements:

Dn
mm′ = e−imφdnmm′(β)e−im′γ, −n ≤ m ≤ n (2.37)

The expressions for dnmm′(β) can be found in [23]. How to calculate the matrices will
not be described in detail here, but the reader is referred to [53] for an effective way of
calculating the rotation matrices. Similar matrices for real spherical harmonics and
how to calculate them are shown in [54].

2.2.4 Decoding and reproduction of sound fields
Now, assume that a HOA signal with (N+1)2 channels shall be decoded to reproduce
the sound field with an array of loudspeakers at a listener’s position. It is assumed that
the loudspeakers are placed far enough away such that the wavefront is sufficiently
plane at the origin. Figure 2.10 shows a set of plane waves arriving from a spherical
surface centred at the listener. The region of validity (ROV) for the reproduction is
inside this sphere.

ROV

1

2

...

...

L − 1

L

Figure 2.10: Illustration of the reconstruction procedure with plane waves arriving from
L loudspeakers, and the region of validity for the reconstruction (see Equation (2.14)). The
listener is illustrated as a small sphere in the centre.

Equation (2.21) expresses the truncated sound field as a sum of spherical harmonic
components, and is valid when sources are placed outside the ROV. By equating this
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equation to a sum of plane waves (Equation (2.15), but with real spherical harmonics)
from a set of L loudspeakers, we obtain

N∑
n=0

n∑
m=−n

injn(kr)Bm
n (ω)Υm

n (θ, φ) =
L∑
l=1

Sl(ω)
∞∑
n=0

injn(kr)
n∑

m=−n
Υm
n (θ, φ)Υm

n (θl, φl)∗

(2.38)
where Sl is the reproduction amplitude of loudspeaker l radiating from (θl, φl). Ex-
pressed in a matrix format

JYB = JYYLS (2.39)

where J is the pseudo-diagonal matrix

J = diag[injn(kr)] (2.40)

similarly to W in section 2.2.2. The solution [8] can be found by the equation

S = DB (2.41)

where D is a decoding matrix consisting of elements Dm
n,l. The matrix can be found

directly if the number of loudspeakers equals the number of HOA components (D =
Y−1

L ). As on the encoding side, a minimum of (N + 1)2 loudspeakers is required
for reproduction, and if the number of loudspeakers is larger, the solution is found
with the pseudo-inverse D = pinv(YL). The loudspeakers must also be distributed
regularly on the sphere to avoid ill-conditioning of the decoding matrix. Figure 2.11
shows the simple decoder.

HOA channels

Ch. N2 + 1
... (N + 1)2

Ch. 5 ... 9

Ch. 2 ... 4

Ch. 1

Encoding
matrix

D

1
2
3
4
5
6
...
L

Loudspeaker
channels

Figure 2.11: Decoding (N + 1)2 HOA signals to L loudspeakers.

The decoding method described above has frequently been named the mode-
matching method [32], because one aims to reconstruct the Ambisonic modes as well
as possible. It is though possible to use other decoding techniques at high frequencies,
such as Max-rE and In-phase [3]. These methods use gain factors gn on the different
Ambisonics signals before the mode-matching decoding. It has recently been experi-
mentally shown that the Max-rE method performs better at higher frequencies [55].
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2.3 Sound field capture and reproduction error
Ideally, we want to capture a 3D sound field and reproduce it exactly, with no error.
Perfect sound field capture would only be possible if a microphone had a continu-
ous microphone distribution. With a finite number of microphones, the sound field
must be truncated to an order N . This gives errors both because of lack of higher
modes (truncation error) and the existence of higher order modes in the real sound
field, which causes spatial aliasing. Also, a finite number of loudspeakers limits the
representation order of a virtual source.

2.3.1 Truncation error
Truncation error is a result of dropping the higher order terms in Equation (2.14). An
important part of HOA performance analysis is the error introduced by this trunca-
tion. Considering a sound field represented with spherical harmonics, the normalised
truncation error is defined as

εN(kr) =

∫
S
|p∞(r, θ, φ, k)− pN(r, θ, φ, k)|2 dS∫

S
|p∞(r, θ, φ, k)|2 dS

(2.42)

where the subscript refers to the truncation order. The integral covers the sphere
surface S. p∞ is the real non-truncated sound field. It is shown [14] that an expression
for the truncation error, resulting from truncating the plane wave in Equation (2.15),
is

εN(kr) = 1−
N∑
n=0

(2n+ 1)(jn(kr))2 (2.43)

in free field conditions, i.e. no scattering objects are present in the ROV (Figure 2.10).
The ”rule of thumb” is that for a desired reproduction wavenumber-distance product
kr, the HOA order must satisfy

N = dkre (2.44)

that is, to limit the normalised truncation error to 4 %. However, when introducing a
scattering object in the sound field, such as a human listener, one will have a different
truncation error. A simple way to model this is to introduce a spherical scatterer
in the centre of the sound field, and calculate the normalised truncation error. The
result is

εN,s(kR) = 1−

N∑
n=0
|h′n(kR)|−2(2n+ 1)

∞∑
n=0
|h′n(kR)|−2(2n+ 1)

(2.45)

which is derived in Appendix A. Here, R is the radius of the rigid sphere.
Figure 2.12 shows the normalised truncation error plotted for the free field and

spherical scatterer case. For instance, a 4th order reproduction system with a desired
error of 4% may need to be increased to a 5th order system when the scatterer is
introduced.
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Figure 2.12: Normalised truncation error for free field (solid lines) and free field with a
spherical scatterer of size R (dashed lines). The horizontal line represents an error of 4 %
(-14 dB).

The equations above are also convenient when calculating the cut-off frequencies
needed for the practical implementation of microphone EQ filters. For example when
expanding from a truncation order N to N + 1, one can calculate the value of kR for
the lower order and desired error level, to determine how low in frequency the signals
in the highest order needs to be represented. This is further discussed in Section 3.4.2.

2.3.2 Spatial aliasing
Another source of error is the spatial aliasing occurring when capturing the sound
field with a microphone array. The Nyquist-Shannon sampling theorem is applicable
in the spatial domain. It states that the upper limiting frequency for which spatial
aliasing does not occur is

fl = c

2d (2.46)

where d is the largest distance between two microphones. The theorem is analogous to
the time domain sampling theorem, but this is a more complicated case. A spherical
sampling differs from a linear sampling of a sound field, and the signals are also
affectted by the rigid sphere geometry. Thus, a comprehensive discussion of spherical
microphone aliasing is not included here.

A main point is the fact that a spherical microphone array can achieve a near
perfect sampling of a Nth order truncated sound field. However, in the actual sound
field, higher order modes will be present, and these ”bleed” into the recorded lower
order modes. One can regard this as an under-sampling of the modal sound field.
Figure 2.13 shows an example where a 32-capsule Eigenmike® array is used to capture
a sound field containing single modes only. The resulting 25 Ambisonic signals suffer
from aliasing from the higher order modes. In particular, the 6th order modes (index
37-49 on the x-axis) will show up in the 4th order signals (index 17-25 on the y-axis).
Note that the first 25 modes are captured with no aliasing.
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Figure 2.13: Amplitude of encoded Ambisonic signals B̂m
n when exposed to a sound field

containing only the mode Bm
n , from simulated Eigenmike® signals at 5 and 10 kHz. The

axis indices represent (n+1)2−n+m. The inverse radial filters have been applied. Inspired
by Meyer and Elko [56].

For a more thorough study on spherical microphone aliasing, sensor noise and
positioning errors, the reader is referred to Rafaely et al. [20, 22].

2.4 Basics of binaural hearing
To be able to analyse and optimise the binaural reproduction system, the fundamen-
tals of binaural hearing are reviewed. The human auditory system is an extremely
complex system that can localise sound sources with a very good accuracy in some di-
rections. Mills [57] found that the minimum audible angle difference one can perceive
is about 1◦ when a sound source is located straight ahead.

Localisation of sources is mainly facilitated by three mechanisms [58,59]:

• Interaural Level Differences (ILD) - The sound intensity difference between the
ear signals

• Interaural Time/Phase Differences (ITD/IPD) - The time delay/phase shift be-
tween the ear signals

• Spectral cues - Localisation based on recognition of patterns in the frequency
spectrum
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In addition, head movements are important to improve front/back localisation.

Interaural level difference
Diffraction and screening from the head will cause the two ear signals to differ in
amplitude when the source is not located in the median plane, which is the plane
that cuts between the eyes. This mechanism is most prominent at high frequencies
where the wavelengths are short compared to the head dimensions. Our threshold for
detecting ILD is about 1 dB [60], while the maximum difference is in the order of 20
dB, at 6 kHz [61].
Interaural time difference
In addition to the ILD, the sound will arrive at the ears at different times. At low
to mid frequencies, the auditory system can sense this time difference by comparing
the phase of the two ear signals. At high frequencies, phase difference estimation
collapses due to two reasons: The short wavelengths makes pure tone phase difference
estimation ambiguous, and the auditory system senses an amplitude envelope rather
than the actual sine signal. Thus, the auditory system uses ITD for localisation only
at low frequencies. The threshold of ITD detection is about 10 µs [62], which is
astonishingly low and corresponds to a frequency of 100 kHz, far above the audible
frequency range. This is the reason for the ∼ 1◦ localisation accuracy when the source
is located directly in front of the head.
Spectral cues
For sources placed in the median plane, the ITD and ILD will tend to be zero. How-
ever, the shape of the frequency spectra will differ, notably with peaks and notches in
the frequency response, called spectral cues. This is due to reflections from the torso,
a non-spherical head shape and the pinna shape. The literature is not conclusive on
which frequency spectral cues determine which directions, but most of the spectral
cues are situated in the 4-16 kHz frequency range [63].
Head movements
An important property of sound localisation is the ability to move the head to im-
prove localisation, especially by reducing the front/back confusion [64,65], commonly
named dynamic localisation. Imagine that a person tries to determine whether a
sound source is located ahead or behind. By rotating the head, it is possible to de-
termine the front/back location by detecting changes in ITD and ILD.

The human auditory system uses all four mechanisms to judge the position of a
source, or more accurately, the arrival direction of the wave. At low frequencies, the
ITD is non-ambiguous and is primarily used to locate the source azimuth. Between
1.5 and 2 kHz, the ITD is ambiguous and the localisation accuracy is at its lowest.
Above 2 kHz, the ILD becomes dominating for azimuth localisation. Localisation in
the median plane and front/back separation is facilitated by the spectral cues and
thus requires a relatively broadband sound to be present.

Distance perception is mostly related to the overall sound level, amount of re-
verberation and semantic cues [59]. However, for close sources, Brungart and Rabi-
nowitz [66] found that the ILD at low frequencies may be significant for the distance
perception.
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2.4.1 Head-Related Transfer Functions
The information in ILD, ITD, spectral cues as well as other localisation cues our
auditory system use can be represented with a set of transfer functions between points
in space and the pressure at the ear drum. In practice these Head-Related Transfer
Functions (HRTFs) are often measured from a loudspeaker at a point in space to a
microphone at the ear canal entrance. Headphones or earplugs can then be used to
replicate the sound pressures at these microphones. With a set of HRTFs covering a
sufficient angular domain with a sufficient resolution, it is possible to study the input
signal to the auditory system in detail and, even better, synthesise virtual sources
with headphones or earplugs.

A major challenge in synthesising 3D audio with HRTFs is the influence of indi-
vidual head geometry. The auditory system of an individual is very adapted to the
exact geometry of the person’s head. Thus, for the most accurate representation,
the HRTFs must be individualised, either by individual measurements or simulations
from a 3D scan [67]. A common assumption is that individual HRTFs is important
to realistic binaural synthesis (especially front/back-confusion [68]), and Batke et al.
showed that this also applies to HOA rendering [44].

Figure 2.14 shows examples of HRTF magnitude and Head-Related Impulse Re-
sponse (HRIR) shape for a few azimuth angles. The HRTFs are taken from the
Neumann KU-100 measurements by Benjamin Bernschütz [69], further discussed in
Section 3.6. The level and time dependency on the incident angle is clearly visible. At
low frequencies, the levels remain similar due to the long wavelength compared to the
head dimensions, but the time differences are clearly identifiable. At high frequencies,
both time and level differences are visible. Peaks and notches in the region above 2-4
kHz will also contribute to elevation and front/back sensation.

2.4.2 ITD estimation
The ITD is defined as the difference in travel time for a wave that reaches the ears.
Normally, it must be estimated from measured HRTFs of individuals or manikins.
Several methods exist to estimate the ITD from measured HRTFs [70]. However, to
obtain the ITD as a function of frequency, one must either consider the HRTF phase,
or divide the HRTF into frequency bands (e.g. critical bands [71]). From the phase
information, the phase and group delay can be found. The group delay is defined as

∆tg = −dϕ
dω

(2.47)

and the phase delay
∆tp = −ϕ

ω
(2.48)

where ϕ is the unwrapped phase angle of the HRTF. If the HRTF has linear phase,
the group delay equals the phase delay −ϕ/ω, and the ITD will be constant for all
frequencies. However, one will normally observe that the ITD changes with frequency
[72]. In particular, the ITD is somewhat higher at lower frequencies for a given angle
of incidence.

The correct way to determine ITD is by considering the group delay, which can
be regarded as the envelope delay of a certain frequency component. However, small
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Figure 2.14: Example of HRIRs (above) and HRTFs (below) from Bernschütz’ Neumann
KU-100 dummy head HRTF library (see Section 3.6). θ = 90◦, left ear. The HRIRs are
shifted vertically for visual purposes.

variations in the phase angle will result in large ITD variations because of the differ-
ential relation. By considering the phase delay, one obtains a much smoother ITD,
with the assumption that the phase angle is a linear function of frequency. This would
be the case if the ITD was constant with frequency.

Figure 2.15 shows some estimated ITDs for a few incident angles in the horizontal
plane. When calculated from the group delay, the ITD estimate shows both that it is
highly frequency-dependent, and possibly incorrectly estimated at higher frequencies.
This shows that narrow-band ITD estimation is somewhat difficult, and the physically
incorrect way of using the phase delay may seem to yield a more reasonable result at
high frequencies, since the phase delay is effectively a smoothing of the group delay
in the frequency range [0, f ]. Thus, one should be careful with using the phase delay
for ITD calculation without taking the necessary assumptions. Note that the high
frequency behaviour of the ITD is less important in this context, because it is mainly
used for localisation at lower frequencies.
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Figure 2.15: Estimated ITDs at certain azimuths angles, from the Neumann KU-100
HRTF library. 0◦ azimuth is straight ahead.

2.5 Binaural rendering of HOA
A 3D sound field is now represented in the HOA format that can be reproduced with a
spherical loudspeaker array (or more precisely, a set of plane wave sources distributed
on a sphere, and radiating towards the origin). Since a large loudspeaker array is very
impractical in most cases, it can be desirable to reproduce the sound field through
headphones. There are two approaches to do this, which yield exactly the same result.
The most intuitive way is to decode the HOA signals to a virtual loudspeaker array,
and assign two HRTFs to each loudspeaker, one for each ear. Thus, the signal at each
ear is the sum of L loudspeaker signals Sl(ω) filtered with the corresponding HRTFs
Hl,Left(ω) and Hl,Right(ω):

Sear(ω) =
L∑
l=1

Hl(ω)Sl(ω) (2.49)

Since each loudspeaker signal is a mix of the HOA signals (Equation (2.41)), the sum
can be written as

Sear(ω) =
L∑
l=1

Hl(ω)
(

N∑
n=0

n∑
m=−n

Bm
n (ω)Dm

n,l

)
(2.50)
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which can be rearranged to

Sear(ω) =
N∑
n=0

n∑
m=−n

Bm
n (ω)Hm

n (ω), (2.51)

Hm
n (ω) =

L∑
l=1

Dm
n,lHl(ω) (2.52)

i.e. we need to pre-compute a set of spherical harmonics-based HRTFs Hm
n (ω) for

each ear.
The second approach to binaural HOA reproduction is exactly this operation –

the HRTF set is converted to a spherical harmonics representation [39] by solving the
equation

H(θ, φ, ω) =
∞∑
n=0

n∑
m=−n

Hm
n (ω)Y m

n (θ, φ) (2.53)

where the spherical harmonics coefficients (in practice, truncated to an order N) must
be determined either by direct integration or by the least squares solution. Thus, the
problem of ill-conditioned matrices must be considered, which requires a uniform (or
dense enough) sampling of the sphere.

Care must be taken when choosing the HRTF set, and in particular, the number of
HRTF measurement positions. Solvang [43] showed that the number of positions is a
trade-off between the reproduction error at lower frequencies (kr < N) and ”spectral
impairments” at higher frequencies (kr > N), which will reduce the high frequency
levels due to loss of high-frequency energy present in the higher order modes.

One can regard each spherical harmonics-based HRTF Hm
n as the transfer function

between a wave field that contains only that mode, and the ear. For example, a
spherical wave traveling inwards to the origin will yield the transfer function H0

0 .

2.5.1 Phase correction at high frequencies
Now, a new method for improving the reproduction at high frequencies is presented.
The method was originally suggested by A. Solvang2, and further developed by the
author.

From the previous discussion and theory, it is evident that the high frequency limit
for decent reproduction is somewhere around

flim = Nc/(2πr). (2.54)

However, the reproduction would still be near perfect for smaller radii, and this can
be further exploited. At low frequencies, the ITD is essential for localisation, and thus
phase preservation is important. The system described in Chapter 3 is a 4th order
system that gives good reproduction up to 2.2 kHz inside a sphere of radius 0.1 m. In
practice, the ears are placed closer to the origin than 0.1m for most humans, so this
is a conservative estimate. Consequently, the ITD is mainly preserved in the desired
frequency range. However, at high frequencies, ILD becomes increasingly important
and the ITD becomes ambiguous. It then seems reasonable to pursue an improvement

2Research scientist at SINTEF ICT, Audun.Solvang@sintef.no
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in ILD at high frequencies, contrary to improving both the ILD and ITD, as shown in
Figure 2.16. In addition, improvement in spectral cues and timbre at high frequencies
is desirable. This motivates for an overall improvement of the magnitude spectrum
above flim, but not the phase spectrum.

0 f

ITD ILD

Spectral cues

flim

kr = N

Figure 2.16: The different localisation methods and their relation to the limiting repro-
duction frequency. At low frequencies, ITD is the primary input. At mid frequencies (1-2
kHz), there is a transition from ITD to ILD. For the method to work, flim should be above
this mid-range. At mid to high frequencies, spectral elevation cues are detected.

To obtain a more accurate high frequency reproduction, the observation points
can be moved closer to the origin, to maintain a constant value of kr. This can
be done by moving the ears’ observation points towards the origin as the frequency
increases. As shown in the spherical head model in Figure 2.17, the time delay at
each ear will then converge to some value, T0, as the frequency increases. Time delay,
and consequently phase angle, can be calculated by considering the travel distance
from a point in space S(r, θ, φ) (the measurement loudspeaker) to the ear points on
the sphere. The simple model assumes that the loudspeaker is far enough away to
assume plane wave incidence, and that the ears are placed at azimuths ±π/2.

rh

T0

GCD

rR

rL

S(r, θ, φ)

~S

Figure 2.17: The geometry of a spherical head and the operation of reducing the effective
head radius. The small, gray arrows illustrates the process of reducing the head radius at
high frequencies that result in different travel distances rL and rR.
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The calculation of the difference in travel time in Figure 2.17 can then be done as
follows (for each HRTF):

1. For the closest ear, find the direct distance (rR on the figure).

2. Find the intersection between the sphere and the plane that is normal to the
vector ~S and runs through the origin. This intersection is a circle in space S.
Then, find the distance from S to this circle.

3. Find the closest point on the circle S to the other ear (in this case the left ear),
and find the great circle distance (GCD) from this point to the ear. The travel
distance rL is then the distance from 2) plus the GCD.

4. Above flim, reduce the sphere radius such that the value of krh is constant, i.
e. equal to N .

5. Repeat steps 1-3 for the sphere with reduced radius, calculate the travel time
differences ∆tL,∆tR and the resulting phase angle difference.

6. Add the differences in phase angle to each HRTF in question, by multiplying
with e−iω∆t

A second, more simple approach is to assume that the head radius is zero at
frequencies above flim, and thus forcing the time delay to equal T0 in this region.
This is done by linearising the phase angle with a slope of dφ

dω
= −T0.

To illustrate the effect of these phase corrections, an example of a phase corrected
HRTF set is shown in Figure 2.18. The plots show the HRIR amplitude as function of
azimuth angle and time, in different frequency bands. Clearly, the HRIRs are nearly
unchanged in the 1 and 2 kHz bands as expected. At high frequencies, the amplitude
envelope is more independent of azimuth when the phase corrections methods are
applied. In the 8 kHz band, the radius reduction method seems to preserve more of
the fine details in the HRIRs, while the linearised phase method seems to concentrate
all the energy between 0.5 and 1 ms, removing much of the phase details. It is difficult
to determine how this will affect the reproduction, but this will be further investigated
in Chapter 4.
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Figure 2.18: Example of the phase correction methods (Radius reduction and Linearised
phase). The resulting HRIRs are filtered with 1/3-octave band filters with the given centre
frequencies. Brightness represents amplitude, where black is negative and white is positive
values. Note the smaller time scale on the 4 and 8 kHz plots. Neumann KU-100 HRIRs.
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CHAPTER 3

Implementation of a real-time system

In this chapter, a signal processing system for binaural Higher Order Ambisonics
reproduction is presented. The system can either use a microphone array as an audio
source, or virtual sources may be created in the space around the listener. Then,
the system is implemented as a real-time system where a microphone array or virtual
source input is captured, processed and simultaneously reproduced over headphones.
A commercial head-tracking system is used to compensate for head motion. Finally,
the system performance is evaluated in terms of resource use and latency.

3.1 Hardware
The real-time auralization system needs a limited amount of hardware to operate.
Five main components constitute the hardware:

• A spherical microphone array

• A data acquisition device (sound card)

• A signal processor (e.g. personal computer)

• A head-tracking device

• Headphones

The em32 Eigenmike® from mh acoustics1 (Fig. 3.1) was chosen as the spherical
microphone array to be used in the system. The Eigenmike is a hard sphere with of
radius 4.2 cm which has 32 microphone capsules (1/2”) mounted nearly uniformly on
the surface. With 32 sensors, it is possible to create a 4th order system with 25 HOA
channels. Inside the sphere there are microphone preamplifiers and AD converters, so
only one digital cable connects the array to the separate power supply and FireWire
unit. The audio is then fed to a computer via a low-latency FireWire bus, and the
microphone signals are available as a 32-channel sound card on the computer. Thus,
separate sound card hardware is not required, except for the headphone output.

1http://www.mhacoustics.com/products (28.04.2014)
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Figure 3.1: The em32 Eigenmike® spherical microphone array. Photo used with permission
from mh acoustics.

Any PC can be used to perform the signal processing, but the code was imple-
mented and optimised on Mac OS X. It can easily be ported to run on Windows or
Linux, though one may have to use different toolboxes for audio I/O and motion in-
put. An Intel Core 2 Duo-based machine was sufficient to run the processing without
glitches. The built-in sound card was used to feed headphone audio.

Several motion tracking sensor systems are commercially available, and the Freespace®

FSM-92 (Fig. 3.2) was chosen in this specific system. The sensor communicates via
the USB Human Interface Devices (HID) protocol, and provides inertial, angular
and directional information, with a sample period of minimum 2 ms. It is small in
size and can easily be mounted on a pair of headphones. A combination of latency,
connectivity, size and price was used to decide the choice of sensor.

Figure 3.2: Hillcrest Labs Freespace® FSM-9 motion sensor, with (left) and without (right)
casing. Photos used with permission from Hillcrest Labs.

The listener can freely choose which headphones to use, as this should not influence
the reproduction quality considerably. It is recommended to use a good quality pair
of headphones to avoid any possible quality degradation.

2http://hillcrestlabs.com/products/sensor-modules/fsm-9/ (28.04.2014)
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3.2 Practical HOA processing
The strength of HOA is that a complex sound field can be coded in a multi-channel
format that contains full 3D spatial information. Any number of sound field record-
ings and virtual sources can be coded and mixed together into a data stream of
finite size. For simple sound fields such as a single virtual source, the audio may be
stored or transmitted in a single-channel format along with meta data describing the
spatial information of the source. The HOA encoding/decoding operation can then
be performed with simple loudspeaker weights at the playback device. However, in
a complex environment, e.g. with many reflections, the number of virtual sources
quickly exceeds the number of HOA channels. Then it is more sensible to transmit
the audio on the HOA format.

In general, a HOA system is composed of an encoder, a transmission or storage
medium, and a decoder at the receiver side. Figure 3.3 shows conceptually how the
system works. The encoder receives virtual sources or microphone array signals and
encodes them to the HOA format. The (N + 1)2 HOA channels are then, if needed,
summed with other HOA signals of any order, and the decoder creates audio signals
that will be fed to a listener through loudspeakers or headphones. Conventional mono,
stereo or surround sound system signals may also be decoded from the HOA signal
(see e.g. [73]).

Encoder Transmission/
storage

Other HOA signals

+

Decoder

Virtual sources

Sound field
recordings

(from mic. arrays)

Loudspeaker array

Mono/stereo/surround

Binaural
headphone
signal

Figure 3.3: Conceptual block diagram of a HOA system, based on the transmission model
of communication.

For virtual sources, the encoder is a very simple operation only consisting of the
gain multiplication in Equation 2.20. Distance coding filters [12] must be implemented
if near-field sources are to be considered, otherwise only a 1/r gain factor and possibly
high frequency air absorption attenuation has to be considered. The distance coding
was not implemented in this version due to the main focus on spherical microphone
arrays as sources, which does not need distance coding. In addition, the HRTFs were
regarded as far-field sources, as is common in auralization.

When a spherical microphone array is used, the encoding process consists of two
operations. First, the signals are mixed with an encoding matrix E that creates 25
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HOA signals (for the 4th order system). These signals have to be equalised to compen-
sate for the microphone geometry. The equalisation filters in Figure 2.7 must therefore
be implemented in a practical manner. The filters are defined in the frequency do-
main, so either the filtering must be done by multiplication in the frequency domain,
or by constructing a time domain filter, e.g. by frequency domain sampling. Due to
the infinite low frequency amplification, the filter responses must be constrained. Out
of the methods suggested in Section 2.2.2, the high-pass filter approach was chosen.
Design of the finite impulse response (FIR) filters are more thoroughly covered in
Section 3.4.2.

In the HOA system in question, transmission or storage is not an issue. Audio is
captured, processed and reproduced on the same device, so the data is only stored in
the device’s memory. However, in a more practical system, the data rate is quite large
(25 channels of uncompressed audio), so a compression algorithm would be needed in
many cases. Such algorithms are discussed by Hellerud et al. [51, 52].

The decoder consist of a simple decoding matrix D and HRTF filters. These are
combined to form decoding filters Hm

n (ω) for the left and right ear. Thus, a total of
50 spherical harmonics-based HRTF filters are needed in a 4th order system. Finally,
the 25 filtered channels per ear is summed to form the binaural signal. Further details
on the HRTF database is discussed in Section 3.6.

3.3 Real-time audio signal processing
Applied signal processing can roughly be divided into two fields; real-time or non real-
time. The latter concerns all signal processing operations where the outcome does not
need to be ready at a specific point in time. Such operations can be media coding,
post-acquisition data analysis or simulations. Real-time systems require that the
processed signal is ready for the user at a certain time, such as in teleconferencing,
TV streaming, or even aircraft system controls. There exist many definitions and
levels of real-time programming, however, details on the more critical parts of real-
time systems are not discussed here.

In real-time audio processing, two common demands are that the processed audio
must be free of glitches/drop-outs, and the latency from the input to the output must
be sufficiently small. For example, in a mobile phone conversation, frequent dropouts
are usually unacceptable and the latency must be small enough to perform a conver-
sation. Normally, real-time audio processing is performed on dedicated hardware or
software solutions, so the demands can be satisfied as long as the code is efficient and
no interruptions occur. However, in certain systems such as on a PC, one cannot al-
ways guarantee that the desired system resources are available. This is because most
operating systems will prioritise other tasks and applications. The way around this
is normally to accept some interruptions and try to make the processing as efficient
and close to the hardware level as possible.

In the most common operating systems, audio input/output (I/O) is usually con-
trolled by the audio Application Programming Interface (API), such as ASIO, Core
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Audio or PortAudio3. The audio API allows a programmer to easily communicate
with the audio hardware within the code, without needing to think about low-level
system operations needed to perform the data transfer.

Real-time audio processing is performed in frames or blocks, or sample-by-sample.
Frames are needed when e.g. FFT operations are done, or when the time to com-
municate with the audio API is too long to allow receiving only one sample at each
iteration. Sample-by-sample processing reduces the latency because there is no need
for I/O buffering of the audio signals. On PCs, frames are normally needed because
of the API, and DSPs can provide both methods4.

3.3.1 MATLAB as real-time software
Even though MATLAB was primarily designed for research and algorithm prototyping
and thus not suited for most real-time applications, there are a few options available
to process audio in real-time. Fundamentally, the programming language is inter-
pretive, which means that each code line is interpreted ”on the fly” and executed by
the interpreter. Thus, the code is not complied to machine code, and will often be
executed inefficiently. This particularly affects loops and the lack of multithreading
abilities. However, many built-in functions such as the fft algorithm is pre-compiled
and thus quite efficient. In addition, MATLAB can execute .mex files that are pre-
compiled with C code. This also enables 3rd party developers to program interfaces
to new devices, such as USB HID (see Section 3.4.3).

For audio I/O, MATLAB has a built-in framework that supports real-time record-
ing and playback, DSP System Toolbox. One can create dsp.AudioRecorder and
dsp.AudioPlayer objects that support any number of I/O channels supplied by the
sound card. Receiving and sending data is done with the step command. A good
3rd party audio API is Psychophysics Toolbox5, which offers the PsychPortAudio.mex
program based on the low-latency PortAudio API. The latter alternative is a bit more
difficult to implement, but turned out to be more efficient resulting in lower latencies
without dropouts. However, both toolboxes facilitate real-time audio processing with
latency of a few hundreds of a second, and both were implemented in the real-time
system.

The most time-consuming operations in the HOA-processing algorithm are the EQ
and HRTF filter banks. These can be implemented as FIR filters, with the filter
function. A more efficient implementation is the fftfilt function that uses the
overlap-add method to perform FIR filtering [74]. However, since the fft and ifft
functions are efficiently implemented for 2D arrays (filtering along only one of the
dimensions), they were found to be the most efficient filtering method. Since they are
implemented with multithreading capabilities, multicore computers benefit from this.
A single call to these functions can perform the whole filter bank operation without
any need of loops.

MATLAB was found to be a suitable tool for the task with only the need for a few
toolboxes. Since it is well suited for prototyping, the system can easily be modified
without the need of low-level coding. However, it is not suitable for creating a final

3www.portaudio.com
4Such as the Analog Devices ADAU1452
5http://psychtoolbox.org/
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product, which would need stable, efficient and low-latency real-time processing, as
well as low cost.

3.4 System overview
Figure 3.4 shows a block diagram of the real-time processing system. A frame-
processing structure is used, which means the audio is processed in frames of e.g.
1024 samples. This is done for two reasons: sound card I/O is rather time consuming,
and the filtering is speeded up because efficient FFT filtering can be used.
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Figure 3.4: Block diagram of the real-time HOA capture and reproduction system. The
FFT/IFFT operations are not shown for simplicity. Thick lines represent groups of signals.

First, the filter data and encoding/decoding matrices are pre-computed (or loaded
from a file). Then, the audio I/O and motion sensor input is initialised. A loop
is then entered, which sequentially processes each audio frame. The looping code
will first wait for new audio to be available from the audio API. Once new data is
available, the audio frame is multiplied with the HOA encoding matrix, converted
into the frequency domain and FFT filtered with the microphone equalisation filter
bank EQn. Note that the data is now compliant with Daniel’s HOA format in the
frequency domain. Subsequently, the motion sensor data from the head-tracker is read
and a rotation matrix R is constructed, that is used to rotate the sound field in the
opposite direction of the head motion. The rotation matrix is then multiplied with
the HOA signal. Finally, the signals are FFT filtered with the spherical harmonics
based HRTFs Hm

n , converted back to the time domain with an IFFT and summed
to form a binaural signal. This two-channel frame of samples is then fed back to the
audio API.

3.4.1 Latency and buffer size
Latency can be divided into three categories: System latency (related to hardware and
APIs), computational latency (Central Processing Unit, CPU, time) and algorithmic
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latency (filter delays). There are two relevant latencies in the real-time system, as
shown in Figure 3.5. The most important one is the end-to-end latency [75] between
head motion and the resulting sound field rotation (T2−T1), which is a combination of
sensor latency, USB communication latency, sound field rotation, HRTF filtering, and
sound card output latency. It is a somewhat challenging task to measure all of these
separately, but some of them can be calculated or estimated (see Section 3.5). The
sensor and USB communication latency is in general unknown, but can be measured.
For this specific system, computational latency is the CPU processing time needed
to compute the rotated HOA signals and perform the HRTF filtering, and can be
estimated with MATLAB’s profiler. Algorithmic delay consists only of the HRTF
filter delay. The sound card output latency is mainly determined by the buffer size,
but possibly by other mechanisms in the audio API and hardware as well.

Time
T0

Audio
capture

T1

Motion
capture

T2

Audio
output

Audio input latency E EQ

Sensor latency

USB comm. R HRTFs Audio output latency

System

Computational
Algorithmic + comp.

Audio latency

End-to-end latency

Figure 3.5: The main components of the system latency, and their categories. Here, the
algorithmic delays are merged with the corresponding FFT/IFFT computation time.

A second but less important latency is the audio latency between the audio input
and output (T2 - T0), which excludes the sensor latency, but includes audio input
latency, the multiplication with E and the EQ filter delay. These must be estimated
in the same way as the end-to-end latency components. Since the audio capture
will often happen on a different computer, the measured audio I/O latency is not
representative for a practical system. Such a system could be e.g. a teleconferencing
system.

DSP System Toolbox requires a specified buffer size to operate. PsychPortAudio
operates in a slightly different way, and determines the buffer size from a user specified
latency requirement. Buffer latency can be calculated as the buffer size divided by
the sample rate, e.g. a typical buffer size of 1024 samples will cause 23.2 ms of latency
at a sample rate of 44.1 kHz. Assuming the input and output buffer sizes are equal
and create equal amounts of delay, the total audio latency will be at least 46.4 ms.
Thus, a main limitation on both end-to-end latency and audio latency is the audio
I/O buffers.
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3.4.2 Microphone EQ filtering
As discussed in Section 2.2.2, the radial equalisation filters 1/Wn(kR) must be mod-
ified to avoid excessive low frequency amplification. Moreau and Daniel’s approach
was followed by introducing high-pass filters to counteract the steep slope [9]. A re-
quirement for these filters is that they preserve the phase in the pass-band to avoid
phase mismatch.

The required reproduction order can be estimated from Equations (2.43)-(2.45), by
selecting a desired error level, reproduction radius and frequency limit. Consequently,
for a given reproduction order, one can estimate how high in frequency one will have
a sufficiently small error. Thus, higher order HOA signals will not contribute much
to the lower frequency bands, and the low frequency components can be filtered out.
Figure 3.6 shows the lower limit of the ”useful frequency bands” as defined by Daniel,
estimated with an error level of 4% (-14 dB) . This figure yields the cut-off frequencies
for the high-pass filters. For example, the 4th order modes only need to be included
above 1.5 kHz (1.7 kHz with a rigid sphere).
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Figure 3.6: Frequency limits for 4 % normalised truncation error as a function of truncation
order. The reproduction radius is 0.1 m, both free-field and with a 0.1 m rigid sphere.

Figure 3.7a) shows the radial filters multiplied with the magnitude of nth order
Butterworth filters, which counteracts the asymptotic low-frequency behaviour. Dis-
carding the phase of the high-pass filters preserves the phase of the radial filters. An
error criterion of 4 % results in just below 40 dB of gain up to 2 kHz for the 4th order
filter. Depending on the amount of microphone noise, this limit should be adapted to
avoid noise annoyance, at the cost of reproduction accuracy and thus directivity.

By using frequency-sampling of the desired frequency domain response, FIR filters
are obtained by multiplying with a time delay factor e−iω∆t to obtain causality and
performing an IFFT. The filter length was constrained by multiplying the impulse
response by a Hanning window of 256 samples and removing the resulting zeros outside
the window. This will result in slight magnitude and phase errors, as shown in Figure
3.7b)-c). However, the magnitude errors are only large at orders 1 and 3, at low
frequencies, while phase errors are below 0.005 radians above 150 Hz.

It can be argued that further high-pass filtering should be implemented, to limit
the amount of low frequency noise in the higher order modes. As high-pass filters
with a low cut-off frequency cannot be implemented with short FIR filters, such filters
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Figure 3.7: Design of the spherical microphone array FIR filters. a) Ideal filter magnitude
(radial filters combined with high-pass filters). b) Magnitude and c) phase phase error when
reducing to a 256-tap FIR filter with a Hanning window.

should be designed as IIR filters to minimise processing requirements. Phase effects
must then be considered, possibly by reversing the high-pass filter phase response
with the FIR filters. However, the observed noise levels were moderate so further
high-pass filtering was not a prioritised task.

3.4.3 Motion input
To obtain a realistic perception of sound sources, including dynamic HRTF effects
that results from head movements, it is essential to use head-tracking in binaural
reproduction of 3D audio [64, 76, 77]. Head-tracking also enables the listener to try
and localising the source by moving the head.

The Freespace® FSM-9 uses USB HID as communication protocol, but MATLAB
does not have built-in support for USB HID. However, Psychophysics Toolbox pro-
vides a .mex-file, PsychHID, that can communicate via USB HID. Communication is
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mainly done with reports, packages of data, both for configuring the sensor and re-
ceiving motion data. Specification of the report protocol is thoroughly documented in
the Hillcrest Labs HCOMM manual [78]. Basically, the sensor is initialised by deter-
mining its device ID and setting the operating mode (Full Motion On) and sampling
period. In addition, a PsychHID timing parameter must be set set to minimise the
motion data reception time consumption in the real-time loop.

Motion data is supplied from the sensor as quaternion data, which is simply a unit
vector x~i+ y~j + z~k rotated by an angle α. It is represented in the following way:

qw = cos α2
qx =~ix sin α2
qy = ~jy sin α2
qz = ~kz sin α2 (3.1)

Quaternions are popular in 3D virtual reality, robotics and navigation because they
are simple to use and avoid gimbal lock6. To obtain the 3-2-3 Euler angles for the
rotation operation (Section 2.2.3), the following relations can be used [79]:

α = arctan2(2qyqz + qwqx, 2q2
w + 2q2

z − 1)
β = arcsin(2qwqy − qwqz) (3.2)
γ = arctan2(2qxqy + 2qwqz, 2wq2 + 2q2

x − 1)

To calibrate the sensor, a quaternion reading is done during the initialisation. This
quaternion rotation is then subtracted from the subsequent readings using conjugate
quaternion multiplication.

3.4.4 Time-variant input variables
A challenge with block processing is that each block assumes a stationary system (in
signal processing terms, a time-invariant system). If there are time-varying signal
processing operations in the system, these must either be implemented as sample-by-
sample operations, or the time-variance must be sampled at each new block input
event. In the system in question, the sound field rotation angles are time-varying
variables that must be considered.

The simplest approach would be to obtain the angular information once per block
of input samples, resulting in a stepwise angular function as input to the HOA decoder.
This may be interpreted as instantaneous movements of the sound field around the
listener, again resulting in discontinuities in the binaural signal perceived as clicks.
Consequently, the amount and loudness of these clicks must be evaluated to determine
if they are audible.

Another approach would be to cross-fade between two successive angular positions.
This could be done by e.g. multiplying the block of samples with a triangular time

6Gimbal lock occurs when two rotational axes are pointing in the same direction, restricting
rotation of the object.
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window, and adding it to the next block, which is rotated by a new angle. An overlap-
add scheme must be used, which will eventually result in an increase of processing
requirements. Figure 3.8 shows the cross-fading method. Possibly, the fades may be
shorter as well, as indicated in the figure. Less processing requirements will then be
required at the cost of sharper transitions between the rotation angles.

Input frames:

n :

t

1 2 3 4 5

1 2 3

n :

t

1 2 3

Figure 3.8: Smoothing of angular position by cross-fading. Triangular windows (top)
along with a more efficient version with shorter fades (bottom). n represents frames that
must be processed.

A less usable approach would be to interpolate the values between two successive
rotation angles, and compute the rotation matrix sample-by-sample with the interpo-
lated value. This requires a lot of calculation time and is considered unfeasible.

Since the effects of using the simplest approach was not particularly disturbing
with slow head movements, implementing an overlap-add method was not prioritised.
However, in a future version, e.g. for subjective listening tests, this issue should be
resolved.

3.5 Performance measures
To have an idea of the amount of system resources the HOA system consumes, some
simple performance measurements and calculations have been done. It is important
to identify the system performance to:

1. Determine a suitable platform for further implementation and system develop-
ment

2. Determine bottlenecks and where system optimisation is critical.

3. Investigate whether the system performs in order to satisfy psychoacoustic de-
mands (head-tracking latency) and overall performance demands.

The CPU usage will affect power consumption (relevant for DSPs and laptop com-
puters), and the ability to run smoothly on a personal computer. On a dual-core
2010 Macbook Pro (Intel Core 2 Duo CPU), the CPU time usage is about 35% with
the current real-time code. This acceptable for prototyping purposes, but one should
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seek to reduce this significantly if the system needs to run simultaneously with e.g. a
video feed. It is expected that modern DSPs will manage this load easily, as they are
more optimised for FFT and filtering operations.

Assuming that all encoding, decoding and filtering matrices are pre-computed,
only 2.5 MB of memory is required using 1024-sample frames of 32 bit single precision
data. Any modern PC can handle this, but care must be chosen if the processing shall
be done on a DSP chip. Such processors may only have a few kB of memory, and thus
the filter length and/or buffer sizes must be adapted. At 44.1 kHz sampling rate, the
data rate will be at least 32 × 44100 × 16 ≈ 22 Mbit/s at the audio input. Thus, a
DSP or sound card must provide such a bandwidth, and a transmission system must
provide 17 Mbit/s (25 HOA channels) if no compression is used.

Latency measurements of the real-time system were performed. The end-to-end
latency was performed in a very simple way: The system was modified to produce
an audio pulse at the headphone output when motion is sensed. Then, the mo-
tion sensor was knocked physically with a pen to produce both an acoustic impulse
that was recorded with a microphone, and an electric pulse that was simultaneously
recorded. The end-to-end latency was then calculated as the time difference between
these two impulses. However, it is only a rough estimate of the actual latency due
to the simplicity of the method. Audio latency (from the spherical microphone ar-
ray to the headphone output) was measured with an external measurement system
(WinMLS 20047) with a loudspeaker providing a signal for the spherical microphone
array. Several consequent latency measurements were performed to obtain a standard
deviation.

Table 3.1 sums up the key performance numbers for the real-time system.

Property Value Unit
CPU load 35 %
Memory usage 2.5 MBytes
Data rate (microphone) 22 Mbit/s
Data rate (HOA signals) 17 Mbit/s
Audio I/O latency µ = 92, σ = 3 ms
End-to-end latency µ = 96, σ = 14 ms

Table 3.1: Key performance numbers for the real-time HOA system. µ and σ is the mean
and standard deviation of the latency measurements.

7http://www.winmls.com
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3.6 HRTF database
The choice of HRTF database is crucial for the reproduction quality. As discussed in
Section 2.4.1, individualised HRTFs are needed to provide the best results. However,
in most cases measuring each person’s HRTF is impractical and a database of HRTFs
from different persons must be used. One must then choose the most appropriate
HRTF set from the database, matching the head geometry as far as possible.

Several HRTF databases are publicly available. The CIPIC database8 [80] contains
HRTFs for 45 subjects at 1250 directions, but unfortunately sources in the lower
quarter-sphere have not been measured. The LISTEN HRTF database9 and the
ARI HRTF database10 also contains many subjects but lacks measurements from
low elevation angles. MIT Media Lab11 has measured the KEMAR dummy head
response and Bernschütz [69]12 measured the Neumann KU-100 at a very high angular
resolution over a full sphere of source locations.

If there is a large gap on the measurement sphere, such as lack of below-torso
measurements, the condition number of the Y-matrix will grow quickly with the rep-
resentation order (see Rafaely and Avni [81]). This reflects the fact that sources placed
in the gap cannot be accurately reproduced, due to the lack of spatial information.
Figure 3.9 shows this, comparing a plane wave virtual source radiating from ahead
and below the listener. When the source is located in the HRTF gap, the loudspeaker
amplitudes are distributed on the edges of the gap, and the Gibbs’ phenomena result-
ing from order truncation are stronger. This will most likely increase the truncation
error and thus localisation blur in this area. One way to cope with this issue would
be to insert imaginary loudspeakers with no output, effectively hiding sources at low
elevations, or interpolate the HRTFs in a way to approximate the non-existing HRTFs.

(a) Ahead, θ = π/2, φ = 0.
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(b) Below, θ = π, φ = 0.

Figure 3.9: Reproduction of a 4th order virtual source ahead and below the listener,
through the CIPIC HRTF database with 1250 HRTF positions. The colours represent
virtual loudspeaker amplitudes, one sphere segment for each HRTF position.

8http://interface.cipic.ucdavis.edu/sound/hrtf.html (09.06.2014)
9http://recherche.ircam.fr/equipes/salles/listen/ (09.06.2014)

10http://www.kfs.oeaw.ac.at/ (09.06.2014)
11http://sound.media.mit.edu/resources/KEMAR.html (09.06.2014)
12http://www.audiogroup.web.fh-koeln.de/ku100hrir.html (09.06.2014)
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Figure 3.9 is also a good illustration of how signals are reproduced with HOA, as a
4th order system ”smears out” the loudspeaker energy at adjacent angular positions.
Note also that the phase difference between the loudspeakers are zero, except those
who run 180◦ out of phase.

Due to the complications mentioned above, the Neumann KU-100 database by
Bernschütz was used. The measurements contain 2354 angular positions on the
sphere, distributed as a Lebedev grid, well suited for HOA use. A robotic arm was
used to align the dummy head, so high positioning accuracy is expected. Below 200
Hz, the HRTFs are extended with an analytical model, and excess phase components
removed to obtain 128-tap HRIR filters. Also, note that the KU-100 dummy head
does not include a torso, which has to be taken into account in the analysis of the sys-
tem. The HRTF database is freely available under a Creative Commons CC BY-SA
3.0 license.

46



CHAPTER 4

Results

In this chapter, the reproduction quality of the binaural HOA system is evaluated
with objective measures. The capture and encoding of HOA signals with a spherical
microphone array introduces aliasing errors and noise, which will be investigated.
Truncation of the spherical harmonics representation, limited by the microphone array
configuration, data rate, number and distribution of HRTF measurement points, limits
the reconstruction accuracy. This will again result in spectral coloration and errors
in the ILD and ITD. These errors are analysed and discussed in this chapter.

Unless otherwise stated, all results are obtained with a truncation order of N = 4.
This is due to two reasons:

• The real-time system was designed as a 4th order system due to the limitations
of the spherical microphone array.

• A 4th order system will have near perfect reconstruction below around 2 kHz.
Thus, the most important ITD cues are already well preserved.

In addition, all the binaural cue results are calculated from the Neumann KU-100
HRTFs, as described in Section 3.6. For reference, the speed of sound is set to c = 343
m/s, and the head radius was estimated to be 9 cm.

4.1 Spherical microphone array aliasing
The aliasing effects discussed in Section 2.3.2 affects the encoding of HOA signals
from a real, infinite order sound field mainly at higher frequencies. This is due to
the discrete sampling on the sphere, limiting the spherical harmonics order that can
be captured. Higher order spherical harmonics will then show up in the lower order
harmonics as spatial aliasing components, especially at high frequencies where the
high order components have a larger amplitude.

One way to visualise the aliasing problem is to create a beamformer from the
microphone and consider the directivity at different frequencies. A simple beamformer
can be realised as [21]

y(ω, θL, φL) =
N∑
n=0

n∑
m=−n

Bm
n (ω)Υm

n (θL, φL) (4.1)
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where y(ω, θL, φL) is the beamformer output at a look direction (θL, φL). Figure
4.1 shows the simulated and measured beam patterns obtained with a plane wave
impinging on the Eigenmike®. The simulated pressures were obtained from 32 sensor
points on a rigid sphere with a radius of 4.2 cm, thus, the effects of microphone
element size are not included.

250 Hz 1 kHz 4 kHz 8 kHz

Figure 4.1: Simulated (top) and measured (bottom) beam patterns obtained with an
Eigenmike® 32-capsule spherical microphone. In the measurements, the higher-order com-
ponents were limited at low frequencies to suppress noise.

The plots show that the beam pattern starts to break up at around 4 kHz (mea-
sured) and 8 kHz (simulated), where aliasing phenomena occur. These are observed
as large side lobes in the beam pattern. Consequently, high-frequency sources may
appear to be located in more than one direction, possibly decreasing localisation ac-
curacy, although the main lobe is still pointing in the correct direction.

Note that for low frequencies, the higher order components must be limited to
suppress noise. This applies only to the measured beam patterns. Here, the amplitude
of the EQ filters is limited as shown in Figure 3.7a). Consequently, the beam patterns
become less directive at low frequencies. One must take care to not generalise this
to a loss of localisation, since localisation is a combination of features in different
frequency bands, and phase information at low frequencies.

At 8 kHz, one can actually observe somewhat less aliasing in the measured beam
pattern compared to the simulated. This is most likely due to the microphone capsule
size compared to wavelength, which results in a spatial smoothing of the sampling
scheme. Epain and Daniel showed that using large capsules decreases the amount of
aliasing at high frequencies [11].
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4.2 Truncation error
As shown in Section 2.3.1, the truncation order will determine the radius of sufficient
reproduction accuracy, defined by an error tolerance. However, the definition in Equa-
tion (2.45) concerns the integrated square error over the whole sphere, resulting in a
single error value. It is also interesting, though, to investigate the spatial distribution
of the truncation error. Figure 4.2 shows the normalised truncation error

εN(kR, θ, φ) = |p∞(kR, θ, φ)− pN(kR, θ, φ)|2
|p∞(kR, θ, φ)|2

(4.2)

where the denominator represents the mean squared pressure at the sphere surface.
The pressure was calculated with Equation (2.17), where p∞ is approximated with
a high order N = 50. As shown in Figure 2.12, the error increases substantially for
kR/N > 0.5, and quite large errors are observed when kR/N ≥ 1. It is important
to notice that the error is not equal everywhere, and thus the perceived error will
differ according to the wave arrival direction. As can be seen in the plots, where the
wave arrives from the right, the error is highest at the front and back of the sphere,
and smallest at the sides. Thus, any wave arriving from the median plane will give
the smallest errors at the ears, assuming that the ears are placed at each side of the
sphere (φ = ±π/2), although this will differ from person to person. Waves arriving
from the side of the head will give larger errors. The resulting differences in ITD, ILD
and spectral cues, and their dependence on arrival direction, will be presented in the
next section.

(a) kR/N = 0.5 (b) kR/N = 0.75 (c) kR/N = 1 (d) kR/N = 1.5

-24 -18 -12 -6 0 6
εN [dB]

Figure 4.2: Normalised truncation error εN (kR, θ, φ) on the surface of a rigid sphere, for
different wavenumber-radius products. The plane wave is impinging on the right side of the
sphere. Truncation order N = 4.
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4.3 Binaural representation error
In this section, the error resulting from truncating the sound field representation and
reproducing it binaurally is studied. All the results in this section is the errors that
arise when a plane wave is represented with Higher Order Ambisonics, and reproduced
with virtual loudspeakers filtered with the corresponding HRTFs. Thus, the error can
be seen as the difference between

• using the original HRTFs from a particular angle, and

• using the HOA-based Nth order truncated HRTFs, mainly with N = 4.

It is important to keep in mind that errors resulting from inaccurate HRTF mea-
surements or non-individualised HRTFs are not included. Such errors will not be
investigated in this thesis.

The normalised truncation error is a general quantitative measure on the recon-
struction error. However, it does not give any information on the auditory system’s
ability to locate a source, and certainly not the perceived sound quality and spatiality
of the source. As explained in Section 2.4, the ILD, ITD and spectral cues are the
commonly used measures for localisation. In addition, timbre – the spectral coloration
of a sound – is important to sound quality and possibly externalisation, distance per-
ception and localisation [49]. The normalised truncation error does not depend on
the number of loudspeakers, which, as shown later, affects the reconstruction.

ILDs and ITDs are mainly used to localise the azimuth of a source, and thus
it makes the most sense to investigate errors for these measures in the horizontal
plane. Spectral cues are used for determining elevation, and consequently errors in
the median plane will be presented. The contour plots that follow are convenient for
visualising how the error changes with frequency and source direction. Then, median
error values from all incidence angles are presented, which give an impression of how
much the error reduces with the new phase correction methods. Finally, sphere plots
with the ILD error in octave bands show how the error depends on the source direction
and correction method.

Errors affecting spectral cues and ILD are plotted in a frequency range from 0 to 15
kHz, because localisation cues based on levels can mainly be found in this range. The
ITD is primarily used below 1.5 - 2 kHz, although the 4th order HOA reproduction
is quite accurate up to 2 kHz, so an extended frequency range of 0 to 5 kHz is used
in the plots to show some of the resulting errors.

4.3.1 Magnitude error - timbre and spectral cues
In the following, the impact of a HOA-representation on the reconstructed sound field
magnitude is investigated. Both the timbre and the spectral cues will be affected by
magnitude errors. Timbre is a measure on the frequency content of the reproduction,
and a significant amplification or reduction at certain frequencies will cause a col-
oration of the sound. Spectral cues are fluctuations in the HRTF frequency response
that vary with elevation angle, and HRTF magnitude errors will disrupt these cues.
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The magnitude error can be calculated with

εm = 20 log10

∣∣∣∣∣HN(f)
H∞(f)

∣∣∣∣∣ , (4.3)

where HN(f) is the HOA-truncated HRTF, and H∞(f) is the original HRTF.

Influence of the number of loudspeakers
As mentioned in Section 2.5, a large number of loudspeakers, or in this case, HRTF
measurement positions, will result in spectral impairment at high frequencies. It is
interesting to see how this number affects the magnitude response around and above
kr = N . Two cases are investigated; one with 2354 virtual loudspeakers as in the
HRTF database, and one with 32 virtual loudspeakers distributed on an icosahedron
surface like the EigenMike®.

The 32 new HRTFs were calculated by using a very high order (N = 40) HOA
representation of the original HRTFs, and synthesising plane wave sources from the
32 directions, resulting in a new set with HRTFs. These will be nearly equal to
hypothetically measured HRTFs from the 32 directions, only limited by the very high
order, yielding accurate (kr = N) reconstruction up to around 24 kHz.

Figure 4.3 shows that a very high number of HRTFs will cause a loss of high
frequencies. In particular, the loss is large in front of and behind the listener. This
behaviour can of course be seen when using real loudspeakers as well. With only 32
HRTFs, the loss is not that clear, and in particular the reproduced levels are too high
at the hidden side of the head, indicated by large positive errors in the plot.
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(a) L = 2354
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Figure 4.3: Magnitude error εm as function of frequency and azimuth angle, for two
different numbers of virtual loudspeakers, L. N = 4. Left ear HRTFs. The plot is limited
to ±21 dB.
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Dependence on N
A higher truncation order will give good reconstruction up to a higher frequency. This
is investigated by averaging the energy from all directions, in practice calculated at
the 2354 angles that constitute the original HRTF set, and comparing the truncated
and original sound fields. This approximates diffuse field conditions, which is merely
a composition of uncorrelated plane waves arriving from all directions.
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(a) Error, non-corrected
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(b) Error, with Villeval’s timbre correction

Figure 4.4: Diffuse field energy error as function of frequency and truncation order εm =
10 log10

(|pdiff,N |2/|pdiff,∞|2). Left ear HRTFs. Note how the error contour lines follow
kr = N at small error levels. L = 2354 virtual loudspeakers.

Figure 4.4a) shows the average error in received energy received, when truncating
the sound field to an order N . Note that in this case, the original HRTF set with
2354 positions is used. The magnitude error increases with frequency but decreases
with a higher representation order. In particular, the error is small up to kr = N ,
as expected. Above this frequency, the loss of high frequencies in the HOA represen-
tation is quite clear. This is due to the absence of higher order modes that contain
the high frequency content. Since a diffuse field can be decomposed into a sum of
uncorrelated HOA modes, each mode contributes to a portion of energy in the sound
field. Removing the higher modes will effectively reduce the total energy level at high
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frequencies.
This general trend could be corrected with a timbre correction filter as suggested

by Villeval [49]:

C(f)
∣∣∣
N→Nh

=
p(f,R)Nh

p(f,R)N
(4.4)

The filter corrects the average frequency response such that it resembles a higher order
Nh. p(f,R)N is the average magnitude response over a sphere for truncation order
N . However, it does only affect the total magnitude response, not the differences
between the ears (e.g. ILD and ITD). In Figure 4.4b), the correction filter is applied
for a desired order Nh = 50. The error is now much smaller, and in some areas it is
even positive, i.e. above 0 dB. This is most likely due to over-estimation of the actual
error in Equation (4.4), because a rigid sphere is assumed rather than a human or
artificial head.

Errors affecting spectral cues and timbre
Now, we move on to study the frequency response in the median plane and how
magnitude errors will affect spectral cues. In addition, the phase correction methods
are included in the study from now.

Median Plane

x

z

MPA

Figure 4.5: Definition of the Median Plane Angle (MPA).

The Median Plane Angle (MPA) is now defined as the angle from the positive
z-axis to a point in the median plane, and with a range MPA ∈ [0, 2π] radians such
that MPA equals 0 rad. above, π/2 rad. in front of, π rad. below and 3π/2 rad.
behind the head, see Figure 4.5. Figure 4.6a) shows the magnitude error with a fixed
order N = 4 and as function of MPA. The error is very small below approximately 2.5
kHz, as expected. Above this frequency, the errors are largely dependent on angle,
which is a clear indication of that the spectral cues will be modified, increasing lateral
localisation errors. Timbre is also likely to be affected, because sounds arriving from
different directions in the median plane will be spectrally coloured.

There are some areas where the magnitude error is largely positive. This is when
the HOA representation is unable to reproduce clear notches in the HRTFs, as shown
in Figure 4.7. Thus, these areas are not extrema in the reproduced signals, but rather
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Figure 4.6: Magnitude error εm as function of frequency and MPA, N = 4. Left ear
HRTFs. The plot is limited to ±15 dB. L = 32 virtual loudspeakers.

lack of the attenuation that exists in the original HRTFs. Particularly the notch that
changes systematically with MPA, resembling the letter ”C”, causes errors.

Figure 4.7 is also a good example on how the spectral cues change with elevation
angle.

Following the discussion in Section 2.5.1, two methods for improving high fre-
quency reproduction are assessed. The first method is to reduce the radius of the
head above flim by considering the sphere model, and thereby changing the phase.
The second method is to assume linear phase above flim, corresponding to a delay
T0. These two methods are named ”radius reduction” and ”linearised phase” in the
following. In our case, flim ≈ 2.2 kHz.
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Figure 4.7: Magnitude of the original left ear HRTFs in the median plane. Notches in the
original HRTFs result in positive errors when reproduced with HOA, as seen in Figure 4.6.
Note the deep notch that changes systematically with MPA, that forms a ”C” letter.

Both methods seem to improve the spectral coloration in the median plane, as
seen in Figures 4.6b)-c). The frequency limit for decent reproduction is increased,
and large errors are now moved to above 5 kHz. At very high frequencies, there are
still large errors, but mainly due to the notches in the HRTFs, as mentioned earlier.
Interestingly, the radius reduction method seems to avoid the notch-related errors
quite well. Both the spectral cues and timbre will be improved in the median plane.

4.3.2 ILD error
Now, we move on to studying the error in ILD and possible improvements obtained
with the phase correction methods. The ILD error can be calculated from the differ-
ence between a truncated and original HRTF,

εILD = 20 log10

∣∣∣∣∣HL(f)
HR(f)

∣∣∣∣∣
N

− 20 log10

∣∣∣∣∣HL(f)
HR(f)

∣∣∣∣∣
∞

where HL and HR are the HRTFs for the left and right ears, truncated to order
N or non-truncated (subscript ∞). The ILD is used for localisation at frequencies
above 1-2 kHz, so a good high frequency ILD reproduction is important. Figure 4.8a)
shows that this is not the case with a reproduction order N = 4, above around 3
kHz. Large notches and peaks in the error plot indicate that the ILD will change a
lot with source location and thus make high frequency localisation very difficult. An
important observation is that, in general, the ILD is too small, resulting in an area
of predominantly negative error for the left ear half-space (an azimuth between 0 and
180 degrees) and a positive area for the right ear half-space (180-360 degrees), since
the ILD here is defined as the left divided by the right ear magnitude. Too small ILDs
will most likely result in a sensation that the source is closer to the centre, either in
front of or behind the listener.
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Figure 4.8: ILD error εILD as function of frequency and azimuth angle. The plot is limited
to ±21 dB, N = 4. L = 32 virtual loudspeakers.

The main expected improvement from the phase correction approach is the more
accurate ILD at high frequencies, as a consequence of improving the reproduction
magnitude. Figures 4.8b)-c) show that the ILD is improved significantly with both
methods, though there is still quite distinct errors when the sound source is placed
at either side of the head, where the ILD is supposed to be large. It is difficult to
determine whether one method is superior simply from the figure, but it is clear that
the ILD is still too small when both methods are used.
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4.3.3 ITD error
Contrary to the ILD, the ITD is used for localisation mainly at low frequencies. Thus,
high frequency preservation of phase and ITD in the HRTFs is not equally important
as the ILD and spectral cues. At azimuths close to 0 and π, the ITD will be very
small, but localisation accuracy is at its best. Small errors at these azimuth angles will
result in large localisation errors. Consequently, a relative error percentage measure
is introduced to compensate for this,

εITD = 100
∣∣∣∣ITDN − ITD∞

ITD∞

∣∣∣∣ [%], (4.5)

where the ITD is estimated from the group delay. Note that, if the original ITD is
very small, small errors become very magnified. Thus, relatively large ITD errors may
appear at azimuths close to 0 and π.

Figure 4.9a) shows the ITD errors, calculated from the group delay. The HOA-
truncated ITD has quite low errors below 2 kHz, except at the incident angles where
the original ITD is very small. Two explanations are possible: Either, the error
introduced by truncating the sound field is relatively much larger than the original
ITD, or the ITD estimation procedure is inaccurate. This is quite possible, judging
from Figure 2.15, but probably it is a combination of both factors. Although some
large errors occur below 2 kHz, the ITD behaves well in general and low-frequency
localisation is thus expected to work well with a truncation order of N = 4, except
perhaps straight in front of and behind the head. Below 500 Hz, the ITD behaves
very well for all incidence angles in the horizontal plane.

Since the phase is changed at high frequencies, the ITD is expected to be un-
changed only for frequencies below flim. The ITD errors with both correction methods
shown in Figure 4.9b)-c) confirm this. Above 2 kHz, the ITD totally breaks down due
to the phase modifications, as expected. However, below 2 kHz the ITDs are mainly
preserved with errors smaller than 10 %, and the error does not seem to behave dif-
ferently than the case where phase correction is not applied. Thus, the corrections
add no further errors in the ITD below 2 kHz.
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Figure 4.9: ITD error εITD as function of frequency and azimuth angle. The plot is limited
to 100 %, N = 4. L = 32 virtual loudspeakers. Note the narrower frequency range than in
previous plots.
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4.3.4 Median error in magnitude, ILD and ITD
To get an overview over the total effect of truncating the HRTF representation, and
applying the phase corrections, some percentile results are presented in the following.
Percentile values are the values below which a certain percentage of observations fall.
In the following, 50% percentile values are presented, meaning the value below which
50% of absolute dB errors fall. This is the same as the median value.

Although calculation of the median value is just a matter of sorting the data and
picking the central value, it can be beneficial to investigate how the data is distributed.
Percentiles are calculated from the empirical cumulative distribution function1 (CDF),
found with MATLAB’s ecdf. Figure 4.10 shows an example of such a calculation.
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Figure 4.10: Example of a typical cumulative distribution function. The example data
is absolute magnitude error in dB, from all incidence directions, at the frequency bin of 5
kHz. In this example, 50% of the absolute error values (in dB) are smaller than x1 = 3.8 dB
(non-corrected) and x2 = 1.4 dB (radius reduction). Thus, these values can also be found
in Figure 4.11 at 5 kHz.

From the CDF one can conclude that the radius reduction shifts the curve to the
left, decreasing the number of errors for a certain percentile, at least at a frequency of
5 kHz. Plotting CDFs for each case and frequency is not an option as the amount of
plots will be huge, so it is more convenient to present median values for each correction
case as function of frequency. Note that in this section, a logarithmic frequency axis
is used, to get a more perceptually realistic impression of how the errors contribute
to the total picture. In the previous section, a linear frequency axis was used to show
the details more clearly at high frequencies.

Figure 4.11 and 4.12 shows the median value of the absolute magnitude and ILD
error in dB, respectively. The dB-errors were calculated from all incidence directions
(i.e. a uniform spherical distribution). It is quite clear that for both the magnitude
and ILD, the median error value is reduced. The limit frequency where the curves
start to differ is around 2.5 kHz. Above this frequency, the magnitude error is reduced
with close to 50% with both proposed methods, except at very high frequencies. Thus,
the perceived timbre of the sound should be improved, and spectral cues are better

1The cumulative distribution function f(x) describes the probability that an observation will be
smaller or equal to x.

59



CHAPTER 4. RESULTS

preserved. The median ILD error is also quite effectively reduced, and stays below 4
dB below 9 kHz. It cannot be easily determined which correction method is superior,
as both have roughly the same error levels.
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Figure 4.11: Absolute magnitude error from all incidence directions, median value. N = 4,
L = 32 virtual loudspeakers.

103 1040

2

4

6

8

10

Frequency [Hz]

M
ed

ia
n

va
lu

e
[d

B]

Uncorrected Radius reduction Linearised phase

Figure 4.12: Absolute ILD error from all incidence directions, median value. N = 4,
L = 32 virtual loudspeakers.

Finally, Figure 4.13 shows that the ITD error, as defined in equation (4.5) remains
mostly unchanged below 2 kHz. Although the error is increased between 2 and 4
kHz, and somewhat at higher frequencies, the ITD behaves similarly in the desired
frequency range. From 600 to 1200 Hz, there is a peak, resulting from the blow-up of
small ITDs at azimuths angles close to 0 and π, as seen in Figure 4.9. Below 600 Hz,
the median values are close to 0%.
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Figure 4.13: Absolute ITD error from all incidence directions, median value. N = 4,
L = 32 virtual loudspeakers. Note the different frequency range compared to the previous
two plots.

4.3.5 ILD error in octave bands
To get a further impression of how the proposed methods perform, the ILD error
is investigated in octave bands, and from all incidence directions. Figure 4.14 shows
spherical plots of the error, with a ”camera” view from -30◦ azimuth and 60◦ elevation.
In the 2 kHz octave band, the error is relatively small (a median value of 1.2 dB),
and the correction methods have a little effect. In addition, the largest errors arise
when the source is placed at the left or right side of the head. This tendency is
less prominent at higher frequencies, but there is a tendency that the error is small
for sources located in the median plane. In the 4-16 kHz octave bands, the error
increases with frequency, but the increase of the median value is about 50% less when
the correction methods are applied. The error is also quite unevenly distributed,
which may result in localisation confusion when the head or source is moving. On the
other hand, the listener may also move the head towards the source, often resulting
in smaller errors judging by the sphere plots.
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Figure 4.14: Absolute ILD error, in octave bands (kHz), from all incidence directions
(spherical distribution). The red arrow indicates the x-axis (nose direction). ε̃ILD is the
median of the absolute ILD error over the sphere. N = 4, L = 32 loudspeakers. The plots
are limited to maximum 10 dB.
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Discussion

This chapter will go through and discuss the work presented in this thesis. First, some
general comments on the binaural HOA system and the possible improvements are
included. Then, the real-time implementation and simulation results are reviewed,
along with the implications of the phase corrections. Finally, some suggestions for
future work are presented.

A main purpose of the work was to implement a working real-time system. When
this was accomplished, most of the work went into the second purpose, to study the
reproduction accuracy and possible improvements. Thus, this last part receives the
most attention in this chapter.

5.1 General comments on Binaural HOA
Higher Order Ambisonics is a very convenient audio format for 3D audio. The in-
dependence from signal acquisition and reproduction is a clear advantage over more
common systems such as consumer surround sound (e.g. 5.1 systems). Also, it can
easily be rotated around the listener without changing loudspeaker positions, which
is a requirement in many applications. It is also scalable, meaning that only a few, or
even just one channel can be transmitted if necessary. Thus, it fits right into the world
of streaming media, where service providers normally operate with scalable video and
audio formats for different customer bandwidths.

The main drawbacks with HOA are the number of required channels and the lim-
ited ”sweet spot” of decent reproduction. A high number of channels can be avoided
by down-scaling (truncating) when necessary, but this shrinks the sweet spot and
consequently decreases high-frequency performance. In a loudspeaker reproduction
system, the sweet spot, limited by kr = N , is an issue when multiple listeners are
present or a single listener wants to move. Thus, the enjoyment of high-quality spa-
tial audio with HOA is highly dependent on many loudspeakers and restrictions on
movement.

Using headphones instead of loudspeakers elegantly solves the issues mentioned
above. The number of loudspeakers is now only limited by the spatial resolution of
the HRTF database. Multiple listeners and freedom of movement is also possible. Re-
production accuracy is now limited by the source material, e.g. the HOA-signals, and
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to what degree the HRTF database is a good fit to the listener. However, a low-order
truncated signal may still be adequate if the phase correction methods investigated
in this study are applied. As a consequence, one can use spherical microphone ar-
rays with a relatively low number of sensors and still obtain good high frequency
reproduction.

Even though the transition from loudspeakers to binaural reproduction solves
some fundamental issues, there are still certain challenges due to the limitations with
spherical microphone arrays. Such arrays suffer from noise at low frequencies, due
to the usually small sphere radius, and aliasing at high frequencies, limited by the
number of sensors. Optimisation and improvements of spherical microphone arrays
was not the main focus in this study, as there is extensive research on the topic
in the literature. It cannot be neglected though, that one will never have a better
reproduction than the source material allows. Therefore, further development on such
arrays, with low signal-to-noise ratios and minimal aliasing problems, is important if
the goal is to listen to recorded sound fields.

It is widely recognised that individual HRTF sets are required to achieve a very
realistic reproduction, especially when it comes to externalisation, i.e. perceiving the
sound source outside the head. Several approaches are possible to face this challenge,
one may accept that non-individual HRTFs must be used, one may try to find the most
suitable available set, or one may seek to use individual HRTFs. If the last option
is chosen, there are two options, acoustic measurements or 3D scanning. Acoustic
measurements is the traditional method, and is time-consuming and often expensive.
3D scanning with consequent Boundary Element Method calculation of the HRTFs
has become more popular during the last decade [67], and may be an efficient way to
individualise HRTFs in the future.

Another challenge with HRTFs is the dynamic behaviour when one rotates the
head. Since the shoulders and torso is not moving, reflection patterns will differ and
consequently the HRTFs will change. One possible solution is to model such reflections
with simple geometric models.

Figure 5.1 shows a hypothetical sketch of how the perceived quality of the system
may be, that is, how close to reality it is experienced. The best achievable quality with
headphones is obtained with individual HRTFs and a high truncation order. Non-
individual HRTFs limit the maximum achievable quality, even with a high truncation
order. Using an order-limited source such as a spherical microphone array, adds noise
and aliasing, so the maximum achievable quality is further reduced, in addition to
a constraint on the reproduction order. The red arrow shows how the HRTF phase
correction could improve the quality at low truncation orders, although there is always
an upper quality limit, indicated by horizontal lines in the figure. Also, loudspeaker
reproduction may be the best alternative quality-wise (indicated by the dotted line
at the top), but at the cost of very many loudspeakers.
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Figure 5.1: Conceptual sketch of how the perceived quality increases with truncation
order. The horizontal lines indicate maximum achievable quality depending on whether
individual HRTFs are used and the source material. Possible improvements by the phase
correction method is indicated with the red arrow.

5.2 Real-time implementation
An important part of the thesis work was the successful implementation of a real-time
system to perform the sound field recording and binaural reproduction simultaneously.
Even though the developed system was not extensively used and evaluated for prac-
tical purposes, it is an important component for future research and development. A
central part of further evaluation of the system is listening tests, which will need a
working real-time implementation.

Since it is very easy to acquire the audio signals from the Eigenmike® to a personal
computer, a lot of work was saved. Programming an interface between the FSM-9
motion sensor and MATLAB was also a relatively small task, due to the existence
of Psychophysics Toolbox. There is however a large step from this type of imple-
mentation to a finished product. For all practical purposes, the system should be
independent of MATLAB, and preferably implemented on a low-cost DSP instead of
a PC. This may require a different microphone array, as most DSPs do not support
FireWire. DSP implementation is also important to minimise the latency, power draw
and risk of dropouts. It is also important to take these steps to make the system easy
to operate.

Initial, simple measurements showed that the end-to-end latency between sensor
motion and sound field rotation in the headphones was around 95 ms. Brungart et
al. [82] suggest that most listeners are not able to detect latencies smaller than 60 ms,
based on localisation experiments. Consequently, the system performs just above the
borderline of what would be acceptable in a virtual environment. It must be noted,
though, that more accurate latency measurements should be performed, due to the
simplicity of the performed measurement.
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5.3 Quantitative results
This section discusses the main findings in Chapter 4, which are quantitative (numeric)
results. However, the reader should keep in mind that it is the qualitative improvement
we perceive, so it is important to approach the numeric results, and in particular
visually convincing figures, with a critical mind.

The analysis of the spherical microphone array performance in Section 4.1 confirms
previous studies (see e.g. [10, 11]), and the simulated and measured beam patterns
are quite similar, except at very low frequencies where the noise becomes an issue.
This issue is actually not that problematic, because decent reproduction can still be
achieved at low frequencies, as kr is low and high order modes are not needed (Fig.
3.6). In fact, the beam patterns may not give a complete impression on how the
array performs in the binaural HOA context – as phase (ITD) information is equally
relevant for localisation.

It was also shown that the normalised truncation error as previously defined by
Ward and Abhayapala [14] needs to be expanded to account for scattering from the
head, and that the spatial distribution of the error is quite uneven. This leads to the
need for new ways to analyse the truncation error, preferably with psychoacoustic
measures such as ILD, ITD and spectral cues. Evaluating HOA with such measures
has become more popular in the recent years, and was further studied in this thesis.

At the base of the study on the binaural representation is the HRTF database.
The comparisons are made between the original HRTFs and the HOA-reconstructed
HRTFs. Thus, the effects of using non-individual HRTFs will not show in the results,
although the results will depend on which database is used because head geometry is
an important factor. For example, listeners with small heads will naturally experience
better reproduction than listeners with large heads, because the kr = N rule of thumb
yields a higher frequency limit.

Figure 4.3 shows that the number of loudspeakers in a HOA system, and conse-
quently the number of HRTFs, is very important at frequencies above the frequency
limit of 2.2 kHz (assuming a 4th order system). This was pointed out by Solvang [43],
but has received little attention elsewhere in the literature. Most authors seem to
use as few loudspeakers as possible in loudspeaker systems, but as many HRTFs as
possible in headphone systems. The reason for the rather large differences is related
to aliasing and modal truncation. As shown in Section 2.5, the virtual loudspeaker
approach is identical to estimating the spherical harmonic spectrum of the HRTF set.
By truncating the spherical harmonic order, a loss of high frequencies is expected.
This is observed in Figure 4.3a) where the spatial sampling is very dense, which sup-
presses aliasing. However, when the sampling is sparse, the aliasing from higher order
modes that are present in the HRTF set will clearly raise the high frequency levels.
This actually helps to reduce the magnitude error. Thus, we get a positive spatial
aliasing effect.

Also, note that the correction filter in Equation (4.4) is only applicable with a
dense HRTF sampling, such as in Figure 4.4. If used on a HRTF set with e.g. 32
measurement points, the filter will over-compensate, and the levels will be too high
due to the spatial aliasing.
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5.3.1 Binaural cues
The main focus in the evaluation was how HOA can reproduce binaural cues and how
the phase correction methods possibly can improve these cues, and the main findings
in this study are the results in Section 4.3. Previous work has shown that HOA works
well up to a certain frequency limit, so the binaural cue errors (particularly the ITD
errors) should be small below this frequency. This was confirmed, except for the ITD
at azimuths close to 0 or π. Here, large errors occur because the original ITD is small,
and the relative error is thus blown up. Most likely, this is a weakness of the analysis,
as there exist more perceptually accurate models than narrowband ITD estimation.
Such models were not addressed because the main focus was on improvement of the
ILD.

In the median plane, errors in the reproduced magnitude will disturb spectral
cues that are essential for determining elevation and front/back separation. Figure
4.6 shows that these cues are significantly better reproduced at high frequencies with
both phase correction methods. In particular, the radius reduction method performs
well. Both phase corrected and uncorrected HOA reproduction seems to have prob-
lems where the original HRTFs have deep notches, although the radius reduction copes
quite well. The systematic change of notch position with angle in Figure 4.7, particu-
larly the “C”-notch, is probably important for elevation cues. As a consequence, the
radius reduction method is the preferred method to improve spectral cues.

In the horizontal plane, the ILD and ITD is used for localisation. Figure 4.8
shows that the high frequency ILD error decreases with both methods, which seem
to perform equally well. This should improve localisation, although it may be that
the errors are still too large to make a significant difference. Errors greater than ±9
dB are still observed above 2 kHz, and the tendency is still too small ILDs, possibly
rotating the perceived source towards the median plane. Figure 4.9 also shows that
ITD error above 2 kHz is somewhat smaller without phase correction. Thus, there
may be some loss in envelope-related ITD cues at high frequencies when the phase
corrections are applied.

When considering the median of the absolute error values from all directions, the
magnitude reproduction is improved considerably above the 2.2 kHz, as shown in
Figure 4.11. This confirms that the reproduction will improve in general, for the
timbre and spectral cues. The same behaviour is observed for the ILD, though the
effect is smaller at frequencies 6-9 kHz. An important observation for both magnitude
and ILD is that the median values seem to increase more linearly with frequency when
the correction methods are applied. Also, the median value plots do not go in favour
of either of the correction methods.

Finally, the spherical plots in Figure 4.14 give an impression on how the ILD
error is distributed on the sphere. A general trend is that the largest errors occur
when the ILD is largest. Thus, sources at the left or right side of the head may
be perceived to be closer to the front or back of the head, and moving sources may
seem to traverse this region faster than intended, although this must be confirmed by
localisation experiments.

There is little doubt that the simulation results show a better performance in
binaural level cues with phase correction. A further analysis should include a more
perceptually correct binaural model, taking the auditory system’s critical bands into
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account, but such models are very likely to prove the same tendencies. Different
HRTF sets should also be analysed – the Neumann KU-100 dummy head does not
include the torso, which also contributes to localisation. However, since no other full-
sphere HRTF sets including torso was found, this could not be investigated in this
study.

5.3.2 Further implications of the corrections
Since the proposed corrections do not improve the ITD – high frequency cues are
rather impaired – it is important to use a truncation order high enough to maintain
the low-frequency ITD cues. An order of N = 3 or higher will ensure this, preserving
the ITD up to about 1.7 kHz. The number of HRTFs must also be chosen wisely,
to balance loss of high frequencies versus spatial aliasing. Phase correction or timbre
correction may counteract the high frequency loss, but might not provide the same
improvements as with a sparsely sampled set due to the positive aliasing effect. This
should be investigated more before making a final choice.

To what degree the HRTF database needs to be individualised will also depend
on how well individual details are actually reproduced. For example, if a low-order
system without phase correction is used, much of the high frequency information in the
HRTFs is useless. One can to a certain degree restrict to measuring or modelling low-
frequency behaviour. Then, if phase correction is applied, HRTF magnitude accuracy
at high frequencies may play a more important role.

5.3.3 Subjective assessment
The next important step in the evaluation process should be subjective assessment of
the system with listening experiments. Here, localisation, externalisation and audio
quality should be investigated. Preferably, individualised HRTFs should be used to
obtain maximum effect of the correction methods. A low-latency real-time imple-
mentation is also needed, but it is assumed that the real-time system designed and
presented this thesis will be sufficient if all the parameters are optimised to achieve
low latency.

5.4 Sources of error
The main sources of error in this study are errors propagating from the underlying
data material, measurement errors and calculation errors.

There is always a risk for having errors in data provided by others, and this cannot
be avoided in most cases. Only the HRTF database and the Eigenmike® microphone
positions are used as external data in this study. Thus, the risk of such errors is quite
low because the data is publicly available.

Measurement errors only apply to the directivity plots in Figure 4.1. Such errors
include noise and microphone calibration. However, the measurements were con-
ducted in a low-noise anechoic environment and the microphone is factory calibrated,
and no indication of large errors was found in the results.

Since much of the results are based on simulations, there is always a risk of cal-
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culation errors, both in the process of converting theory to program code, and pure
programming errors. The possibility of such errors was continuously assessed by com-
paring the results with theoretical considerations (i.e. good performance for kr < N),
and practical considerations (i.e. error magnitude).

It is especially important to be critical to the results since they cannot be compared
with measurements at this point, and should be confirmed by subjective assessment.

5.5 Suggestions for future work
Several aspects of the work in this thesis need to be confirmed with more experiments,
and some parts need to be developed further, in particular the real-time implementa-
tion. Therefore, some suggestions for future work are provided in the following.

• The effect of the phase correction methods needs to be confirmed by listening
experiments. Localisation experiments will be crucial to confirm the improve-
ment in ILD. Externalisation and audio quality is also important, as there may
be unwanted side effects of the corrections.

• The real-time system must be developed to reduce latency, computational cost
and possibly hardware requirements. It is natural to continue with a C imple-
mentation, and finally use a DSP chip to perform the processing.

• If a spherical microphone array is still to be used as a source, it is important
to quantify how the suggested corrections work in conjunction with the array
performance. Sparsely sampled arrays with much aliasing may cause the cor-
rections to be useless, because high-frequency behaviour is already deteriorated.
A study should include the whole chain from microphone to headphones.

• The suggested correction methods could be compared to traditional methods,
such as Max-rE and In-Phase [3].

• There may be alternative methods to do the phase corrections, e.g. in the spher-
ical harmonics domain. Future research should seek to develop such methods,
for example with the a priori knowledge about the HRTFs and ILD truncation
error. This will most likely require an optimisation procedure.

• Even though few HRTF positions seem to yield better results in this study, this
was due to positive aliasing effects. How this is perceived, is not known, and
thus the sampling density of the HRTF set should be further investigated.

• In addition, different HRTF sets should be investigated, particularly with focus
on whether HRTFs with a torso yield the same improvements, and whether
individual differences are more important than the errors seen in this study.

• An interesting approach would be to compare the original and phase corrected
HRTFs with a listening experiment, without using HOA. Thus, one can deter-
mine whether the high frequency phase information in the HRTFs are significant
for localisation.
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CHAPTER 6

Concluding remarks

This thesis has concerned several aspects of Higher Order Ambisonics, with most
attention to real-time implementation and binaural reproduction. Those were the
main objectives, but other parts such as spherical microphone array processing and
motion handling had to be included to finalise the real-time system.

A thorough review of the theoretical framework was provided to aid the imple-
mentation, both for the author and the reader. The theory also serves as reference
for future work to be done by SINTEF ICT or university students. To further ease
the future work with real-time implementation, a description of the current imple-
mentation was provided, with comments and suggestions for improvements. It was
clearly established that the current system, developed in MATLAB, is not suitable
for a final product, and must be optimised with respect to latency if listening tests
shall be performed.

Evaluation of the system focused on the microphone array performance, and the
quality of binaural reproduction. Two novel methods for improving the binaural
reproduction have been investigated. They use psychoacoustic models to optimise the
HRTFs, and exploit the auditory system’s insensitivity to phase at high frequencies.

Simulations showed that the binaural reproduction fails above the frequency limit
defined by kr = N , but both phase correction methods will yield an improved repro-
duction above this frequency. In particular, the spectral cues and ILD is improved.
It was also shown that the number of HRTFs used in the HOA-decoding has a large
impact on the reconstruction accuracy. Simulations and measurements confirm the
microphone performance compared to theory and previous studies.

These results make way for higher quality reproduction with binaural HOA, or
possibly lower truncation orders, although lower orders than N = 3 will also impair
the ITD. Such impairments cannot be avoided with the proposed methods, so Also,
listening tests should be performed to confirm or disprove the findings, and whether
other audible artefacts will occur.

Conclusively, the study has shown that binaural HOA is a convenient 3D sound for-
mat, with certain limitations that were addressed and possibly improved. The future
will show whether this technology is viable, most likely depending on advancements
in HRTF measurement and modelling.
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APPENDIX A

Truncation error on a rigid sphere

The normalised truncation error is defined as

εN(kr) =

∫
S
|p∞(r, θ, φ, k)− pN(r, θ, φ, k)|2 dS∫

S
|p∞(r, θ, φ, k)|2 dS

(A.1)

where p∞(r, θ, φ, k) is the original sound field, and pN(r, θ, φ, k) is the sound field
obtained by truncating the spherical harmonics representation to order N . S denotes
the spherical surface.

Now, consider a plane wave impinging on a rigid sphere with radius R. The total
pressure is a sum of the incident plane wave and the scattered wave. On the rigid
sphere, the radial derivative of the total pressure must be zero:

∂

∂r

(
pi(r, θ, φ) + ps(r, θ, φ)

)∣∣∣∣∣
r=R

= 0 (A.2)

The scattered field is represented with outgoing waves [50]

ps(r, θ, φ) =
∞∑
n=0

n∑
m=−n

Cm
n (ω)hn(kr)Y m

n (θ, φ), (A.3)

the incident field is represented with the plane wave, Equation (2.15) truncated to
order N ,

pi(θ, φ) = 4π
N∑
n=0

injn(kr)
n∑

m=−n
Y m
n (θ, φ)Y m

n (θi, φi)∗ (A.4)

and the solution to Equation (A.2) is

4π
N∑
n=0

inkj′n(kR)
n∑

m=−n
Y m
n (θ, φ)Y m

n (θi, φi)∗

+
∞∑
n=0

n∑
m=−n

Cm
n (ω)kh′n(kR)Y m

n (θ, φ) = 0 (A.5)

Due to the orthonormality of the spherical harmonics, the summation terms for n > N
must be zero, i.e. Cm

n (ω) = 0, n > N . The expression for Cm
n becomes

Cm
n (ω) = −4πin j

′
n(kR)
h′n(kR)Y

m
n (θi, φi)∗ (A.6)
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and the scattered pressure field pi+ps can simply be expressed as a truncated version
of Equation (2.17),

ptot(r, θ, φ, ω) = 4π
N∑
n=0

in
[
jn(kr)− j′n(kR)hn(kr)

h′n(kR)

]
n∑

m=−n
Y m
n (θ, φ), Y m

n (θi, φi)∗ (A.7)

and at the sphere surface:

ptot(r, θ, φ, ω) = 4π
N∑
n=0

in+1

(kR)2h′n(kR)

n∑
m=−n

Y m
n (θ, φ), Y m

n (θi, φi)∗ (A.8)

Now, the squared error over the rigid sphere, simplifying the pressure notation, is

∫
S
|p∞ − pN |2 dS =

∫
S

∣∣∣∣∣∣4π
∞∑

n=N+1

in+1

(kR)2h′n(kR)

n∑
m=−n

Y m
n (θ, φ)Y m

n (θi, φi)∗
∣∣∣∣∣∣
2

dS

= (4π)2
∞∑

n=N+1

∞∑
n′=N+1

n∑
m=−n

n′∑
m′=−n′

in+1(in′+1)∗
(kR)4h′n(kR)h′n′(kR)∗

× Y m
n (θi, φi)∗Y m′

n′ (θi, φi)
∫ 2π

0

∫ π

0
Y m
n (θ, φ)Y m′

n′ (θ, φ)∗R2 sin θ dθ dφ (A.9)

which, due to the spherical harmonics orthonormality property (Equation (2.7)), re-
duces to:∫

S
|p∞ − pN |2 dS = (4π)2

∞∑
n=N+1

n∑
m=−n

1
(kR)4|h′n(kR)|2 |Y

m
n (θi, φi)|2R2 (A.10)

For a real plane wave (N →∞), the integrated squared sound pressure over the rigid
sphere can similarly be expressed as:

∫
S
|p∞|2 dS = (4π)2

∞∑
n=0

n∑
m=−n

1
(kR)4|h′n(kR)|2 |Y

m
n (θi, φi)|2R2 (A.11)

Thus, Equation (A.1) becomes

εN,s(kR) =

∞∑
n=N+1

n∑
m=−n

1
|h′n(kR)|2 |Y

m
n (θi, φi)|2

∞∑
n=0

n∑
m=−n

1
|h′n(kR)|2 |Y

m
n (θi, φi)|2

(A.12)

where (4π)2/k4R2 cancels on both sides of the fraction. Rearranging and splitting the
sums yields the normalised truncation error with the scatterer present

εN,s(kR) = 1−

N∑
n=0

n∑
m=−n

|h′n(kR)|−2|Y m
n (θi, φi)|2

∞∑
n=0

n∑
m=−n

|h′n(kR|−2|Y m
n (θi, φi)|2

(A.13)
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that can be further simplified with the addition theorem (Equation (2.8)):
n∑

m=−n
|Y m
n (θi, φi)|2 = 2n+ 1

4π Pn(cos 0) (A.14)

and, with Pn(cos 0) = 1, the final result is:

εN,s(kR) = 1−

N∑
n=0
|h′n(kR)|−2(2n+ 1)

∞∑
n=0
|h′n(kR)|−2(2n+ 1)

(A.15)

In practice, the denominator term must be calculated for a finite order high enough to
ensure convergence of the error function. This is not a problem, since the |h′n(kR)|−2(2n+
1) term decreases rapidly with n above kR = n, as shown in Figure A.1.
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Figure A.1: Behaviour of the denominator terms in Equation (A.15).
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Overview of the MATLAB code

This appendix describes the MATLAB files in the attached zip-file in Table B.1 and
B.2. Further on, the most important scripts and functions are also included.

Table B.1: MATLAB scripts

File Name Description

SHrealTime.m Real-time processing of Eigenmike® microphone signals, converted
to Higher Order Ambisonics, and reproduced binaurally with
head-tracking. Requires Psychophysics Toolbox and DSP System
Toolbox

SHrealTimePortAudio.m Same as above, but does not require DSP Toolbox

micFilterDesign.m Designs and stores microphone EQ FIR filters

resampleHRTFs.m This script resamples the 2354-point KU 100 HRTF library to a
32-point library using a spherical harmonics representation. The
sample rate (fs) can also be changed

chXfigY.m Plots the figures in this thesis, where X is the chapter, and Y is the
figure number in that chapter. Placed in the attached figures
folder
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Table B.2: MATLAB functions

File name Description

calcBinaural-
ReproductionErrors.m

Calculates and plots various reproduction errors when reproduc-
ing HOA binaurally. Used by the chXfigY scripts. Look at those
to better understand how this function works.

FSM9Comm.m Communication with the Freespace FSM-9 with PsychHID

FSM9motionConversion.m Converts Freespace FSM-9 data to quaternions

FSM9quaterions2eulers.m Computes euler angles from a reference quaternion (q0) and a
motion input (q1). First, a reverse q0 rotation is applied, then q1
is applied (i.e. q = conj(q0)× q1).

SHdecodeHOA2Bin.m Finds the resulting HRTFs when a virtual source is encoded with
Nth order HOA, and decoded to a binaural signal with the given
HRTF database.

SHdistanceToPointOn-
Sphere.m

Finds the closest distance from a point in space, to a point on a
sphere.

Shhankelderivative.m Calculates the derivative of the spherical hankel function of the
first kind, h′n(x).

SHphaseCorrectHRTF.m Applies one of the developed phase correction methods to the
HRTFs.

SHrotationMatrix.m Creates the rotation matrix R with the 3-2-3 euler angles α, β, γ,
so that the soundfield can be rotated by B̂ = RB. Only for HOA
order N ≤ 4.

SHsynthesizePlaneWave-
OnSphere.m

Synthesises plane wave pressure on a rigid sphere

SHtimbreCorrection-
Filter.m

Calculates Villeval’s Timbre correction filter [49]

SHtransform.m Calculates the Spherical Harmonics coefficients Y m
n .
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SHrealTimePortAudio.m

1 % SHrealTimePortAudio.m
2 %
3 % Real-Time processing of EigenMike microphone signals, converted to
4 % Higher Order Ambisonics, and reproduced binaurally with head-
5 % tracking. Requires Psychophysics Toolbox
6 %
7 % This version uses PsychPortAudio to perform audio I/O
8 %
9 % Jakob Vennerød, NTNU, 2014.

10 % jakob.vennerod@gmail.com
11
12
13 %% Define input parameters
14 T = 25; % Auralization duration
15
16 Fs = 44100; % Sampling rate
17 N = 4; % HOA capture and reproduction order
18 frame size = 1024; % Processing frame size
19 nfft = frame size*2; % FFT size
20 buffer size = 1024; % Sound card buffer size (Input & Output)
21 amplification = 30; % Signal amplification, in dB
22 useAudioIO = 1; % Use audio I/O or just simulate
23 useMotionInput = 1; % Use motion input or just simulate
24
25 % If no Eigenmike, either select useVirtualSource or useRecordedSig:
26 useVirtualSource = 1; % Whether to use virtual source or EM32
27 useRecordedSig = 0; % Whether to use a prerecorded EM32 track
28 FSM sampleperiod = 4000; % FSM-9 sample period in microseconds
29 PsychHID sampleperiod = 4; % PsychHID sample period in milliseconds
30
31 % For the phase correction
32 c = 343; % Speed of sound
33 r lsp = 3.25; % HRIR Loudspeaker radius
34 r = 0.09; % Assumed head radius
35 T0 = 4.6e-4; % Delay from loudspeaker to origin
36
37 % Phase correction method
38 phCorrMethod = 'none'; %'none', 'reduceRadius' or 'linearPhase'
39
40 %% Read audio data if virtual source
41 if(useRecordedSig)
42 % Filename (em32 recorded audio)
43 fname = 'audio/em32 evidence.wav';
44 mic sig = single(audioread(fname,[1 ceil(Fs*T*1.01)])).';
45 elseif(useVirtualSource)
46 % Filename (any audio file)
47 fname = 'audio/Evidence stereo 30s.wav';
48 sig = (audioread(fname,[1 ceil(Fs*T*1.01)]));
49
50 % Source straight ahead:
51 B = SHtransform(N,pi/2,0,0);
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52 HOA sig = (sig(:,1)*B).';
53 end
54
55 %% Compute encoding matrix
56 % Load elevations and azimuths for the EM32 microphone. Convert to
57 % radians
58 load('EM mic locations.mat')
59 mic elev = EM elevations/180*pi;
60 % Correct for mic rotation
61 mic azi = EM azimuths/180*pi + pi/2;
62
63 % Generate real spherical harmonics matrix for microphones
64 Y = SHtransform(N,mic elev,mic azi,0);
65 % Find Encoding matrix
66 E = single(pinv(Y));
67
68
69 %% Compute decoding matrix
70 % Load HRIR data: Impulse responses, elevations and azimuths
71 load('KU100 32 44100.mat');
72
73 % Phase correct HRTFs if necessary:
74 [hrir L,hrir R] = SHphaseCorrectHRTF(phCorrMethod,hrir L,hrir R,...
75 elevations,azimuths,Fs,N,c,r lsp,r,T0);
76
77 % Generate spherical harmonics matrix for HRIRs
78 Y = SHtransform(N,elevations,azimuths,0);
79 % Find Decoding matrix
80 D = pinv(Y);
81
82 % Multiply with HRIR data and find new binaural filtering matrix,
83 % corresponding to one HRIR filter per SH component per ear.
84 % Also, convert to frequency domain
85 DbinL = single(fft(D*hrir L,nfft,2));
86 DbinR = single(fft(D*hrir R,nfft,2));
87
88 %% Load mic equalizer FIR coefficients, convert to freq. domain
89 load('EQ 256samples.mat')
90 % Convert to frequency domain and put in a matrix
91
92 EQ(1,:) = fft(eq(1,:),nfft,2);
93 for i=2:4
94 EQ(i,:) = fft(eq(2,:),nfft,2);
95 end
96 for i=5:9
97 EQ(i,:) = fft(eq(3,:),nfft,2);
98 end
99 for i=10:16

100 EQ(i,:) = fft(eq(4,:),nfft,2);
101 end
102 for i=17:25
103 EQ(i,:) = fft(eq(5,:),nfft,2);
104 end
105 EQ = single(EQ);
106
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107 %% Initialize PsychHID and the FSM-9
108 if(useMotionInput)
109 % Find FSM-9 device number
110 devNo = FSM9Comm('Discover');
111 if(devNo == -1)
112 return;
113 end
114
115 % Set FSM-9 SampleRate in microseconds
116 outputdata = FSM9Comm('SetSampleRate',devNo,FSM sampleperiod);
117
118 % Set PsychHID sample rate in milliseconds
119 FSM9Comm('SetPsychHIDSampleRate',devNo,PsychHID sampleperiod);
120
121 % Set configuration Full Motion On
122 outputdata = FSM9Comm('FullMotionOn',devNo);
123
124 input('Place the sensor in position for calibration and press

ENTER...')
125
126
127 % Flush some reports
128 FSM9Comm('Flush',devNo);
129
130 % Find the calibration state
131 motionInput = FSM9Comm('ReceiveMotionData',devNo);
132 if(isempty(motionInput))
133 return;
134 end
135 if(motionInput(1) == 38)
136 q0 = FSM9motionConversion(motionInput(11:18));
137 q old = q0;
138 q = q0;
139 end
140 % Pause for keycheck
141 input('OK, when ready press enter...')
142 pause(0.2)
143 end
144 % Initialize rotation matrix
145 R = single(SHrotationMatrix(0,0,0));
146
147 %% Pre-initialize stuff
148 n = 1; % Sample counter
149 newMotionInput = 0; % Motion input flag
150
151 % Some audio arrays
152 HOA frame in = single(zeros((N+1)ˆ2,frame size));
153 HOA frame = HOA frame in;
154 HOA frame L = HOA frame;
155 HOA frame R = HOA frame;
156 tail eq = HOA frame in;
157 tail L = HOA frame in;
158 tail R = HOA frame in;
159 tmp = single(zeros((N+1)ˆ2,nfft));
160 Left = single(zeros(1,frame size));
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161 Right = single(zeros(1,frame size));
162
163 % Load KbCheck and WaitSecs from PsychToolbox
164 KbCheck;
165 WaitSecs;
166
167 %% Initialize PortAudio
168 if(useAudioIO)
169 % Number of input channels (set to 32 for EigenMike)
170 if(useVirtualSource | | useRecordedSig)
171 inChannels = 2;
172 else
173 inChannels = 32;
174 end
175 % Perform low-level initialization of the sound driver:
176 InitializePsychSound(1);
177 % Level of debug output:
178 PsychPortAudio('Verbosity', 1);
179 % Open PortAudio input
180 painput = PsychPortAudio('Open', [], 2, 2, Fs, inChannels, 0,[]);
181 % Preallocate an internal audio recording buffer with a capacity
182 % of 10 seconds:
183 PsychPortAudio('GetAudioData', painput, 10);
184 % Open default audio device [] for playback
185 paoutput = PsychPortAudio('Open', [], 1, 2, Fs, 2, buffer size, []);
186 % Start audio capture immediately and wait for the capture to start.
187
188 % Perform output warmup start
189 PsychPortAudio('FillBuffer', paoutput, zeros(2,1024));
190 PsychPortAudio('Start', paoutput, 1, 0, 1);
191 PsychPortAudio('Stop', paoutput, 1);
192
193
194 painputstart = PsychPortAudio('Start', painput, 0, 0, 1);
195
196 % Quickly readout available sound and initialize sound output
197 % buffer with it:
198 [audiodata, ˜, ˜, capturestart]= PsychPortAudio(...
199 'GetAudioData',painput, [], frame size/Fs, frame size/Fs, 1);
200 % The frame size variable actually determines the (desired)
201 % latency here.
202
203 % Feed everything into the initial sound output buffer:
204 PsychPortAudio('FillBuffer', paoutput, audiodata(1:2,:));
205
206 % Start the playback engine immediately and wait for start.
207 playbackstart = PsychPortAudio('Start', paoutput, 0, 0, 1);
208 % Expected latency (I->O)
209 expecteddelay = (playbackstart - capturestart) * 1000;
210 end
211
212 % Start timer
213 tic
214 [keyIsDown, secs, keyCode] = KbCheck;
215 while(n < Fs*T)
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216
217 if(useVirtualSource)
218 HOA frame = HOA sig(:,n:n+frame size-1);
219
220 % Dummy read from audio input
221 [audiodata in] = PsychPortAudio('GetAudioData', painput,...
222 [], frame size/Fs,frame size/Fs,1);
223 else
224 if(useAudioIO)
225 % Record audio and amplify
226 [audiodata in] = PsychPortAudio('GetAudioData',...
227 painput, [], frame size/Fs, frame size/Fs, 1);
228 mic signals = single(audiodata in*10ˆ(amplification/20));
229 end
230
231 if(useRecordedSig)
232 mic signals = mic sig(:,n:n+frame size-1);
233 end
234
235
236 % Encode to HOA format
237 HOA frame in = E*mic signals;
238
239 % Microphone EQ filtering. Store the filter conditions in
240 % tail matrices
241 tmp = ifft(fft(HOA frame in,nfft,2).*EQ,nfft,2);
242 HOA frame = tmp(:,1:frame size) + tail eq;
243 tail eq = tmp(:,frame size+1:end);
244
245 end
246
247 if(useMotionInput)
248 % Get motion input from FSM-9
249 % Flush last reports. Needed?
250 reports = FSM9Comm('Flush',devNo);
251
252 % Get motion input
253 motionInput = FSM9Comm('ReceiveMotionData',devNo);
254 if(motionInput(1) == 38)
255 % New motion report
256 newMotionInput = 1;
257 elseif(motionInput(1) == -1 && (˜isempty(reports)))
258 % Check last report
259 motionInput = reports(end).report;
260 if(motionInput(1) == 38)
261 newMotionInput = 1;
262 else
263 newMotionInput = 0;
264 end
265 else
266 % No new motion input
267 newMotionInput = 0;
268 end
269
270 % Find new orientation if we have new motion input
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271 if(newMotionInput)
272 % Extract quaternions
273 q = FSM9motionConversion(motionInput(11:18));
274 [phi, theta, psi] = FSM9quaternions2eulers(q0,q);
275 end
276
277 % Check if the new motion input is really new:
278 angle movement = sqrt(sum((q(2:4)-q old(2:4)).ˆ2));
279
280 if( angle movement < 0.001)
281 newMotionInput = 0;
282 end
283
284 % Find new rotation matrix if necessary
285 if(newMotionInput)
286 % Store old motion data
287 q old = q;
288 %Reverse (for head-tracking):
289 R = single(SHrotationMatrix(-psi,theta,-phi));
290 %Normal (for point-to-source):
291 %R = single(SHrotationMatrix(phi,-theta,psi));
292 end
293 end
294
295 % Rotate HOA signals
296 HOA frame rotated = R*HOA frame;
297
298 %HRIR filtering. Can be done before rotation.
299 HOA f r F = fft(HOA frame rotated,nfft,2);
300
301 tmp = ifft(HOA f r F.*DbinL,nfft,2);
302 HOA frame L = tmp(:,1:frame size) + tail L;
303 tail L = tmp(:,frame size+1:end);
304
305 tmp = ifft(HOA f r F.*DbinR,nfft,2);
306 HOA frame R = tmp(:,1:frame size) + tail R;
307 tail R = tmp(:,frame size+1:end);
308
309 % Sum the HOA signals to L+R
310 Left = sum(HOA frame L,1);
311 Right = sum(HOA frame R,1);
312
313 % Create output vector
314 outputdata = [Left;Right];
315
316 if(useAudioIO)
317 PsychPortAudio('FillBuffer', paoutput, outputdata, 1);
318 end
319
320 % Increase sample counter
321 n = n + frame size;
322 end
323 toc
324 %%
325
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326 % Clean up PortAudio
327 if(useAudioIO)
328 % Done. Stop the capture engine:
329 PsychPortAudio('Stop', painput, 1);
330 % Drain its capture buffer...
331 [audiodata drain,˜] = PsychPortAudio('GetAudioData', painput);
332 % Stop the playback engine:
333 PsychPortAudio('Stop', paoutput, 1);
334 % Ok, done. Close engines and exit.
335 PsychPortAudio('Close');
336 end
337
338 % Stop the motion sensor
339 if(useMotionInput)
340 FSM9Comm('Sleep',devNo);
341 FSM9Comm('Flush',devNo);
342 FSM9Comm('StopReports',devNo);
343 end
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SHdecodeHOA2Bin.m

1 function [HRTF L,HRTF R,HRIR L,HRIR R] = SHdecodeHOA2Bin(elev in,azi in,
hrir elev,hrir azi,N,hrir L,hrir R,nfft)

2 %SHdecodeHOA2Bin Finds the resulting HRTFs when a virtual source
3 %is encoded with Nth order HOA, and decoded to a binaural signal
4 %with the given HRTF database.
5 %
6 % Input arguments:
7 % elev in Elevation of the virtual source
8 % azi in Azimuth of the virtual source
9 % hrir elev Elevations for the HRIRs

10 % hrir azi Azimuths for the HRIRs
11 % N Desired HOA truncation order
12 % hrir L Left ear HRIRs
13 % hrir R Right ear HRIRs
14 % nfft FFT size
15 %
16 % Output arguments:
17 % HRTF L Resulting left ear HRTF
18 % HRTF R Resulting right ear HRTF
19 % HRIR L Resulting left ear HRIR
20 % HRIR R Resulting right ear HRIR
21 %
22 % Jakob Vennerød, NTNU, 2014.
23 % jakob.vennerod@gmail.com
24
25 % SH representation of the virtual source
26 B = SHtransform(N,elev in,azi in,0);
27
28 % Find the sperhical harmonic coefficients corresponding to the
29 % HRIR angles
30 Y = SHtransform(N,hrir elev,hrir azi,0);
31
32 % Decoding matrix
33 D = pinv(Y);
34
35 % Multiply with HRIR components and find new decoding matrix
36 DbinL = D*hrir L;
37 DbinR = D*hrir R;
38
39 % Find HRIRs
40 HRIR L = (B*DbinL).';
41 HRIR R = (B*DbinR).';
42
43 % Find HRTFs
44 HRTF L = fft(HRIR L,nfft);
45 HRTF R = fft(HRIR R,nfft);
46 end
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SHphaseCorrectHRTF.m

1 function [hrir L new, hrir R new] = SHphaseCorrectHRTF(method,hrir L,
hrir R,elevations,azimuths,Fs,N,c,R,r,T0,nfft)

2 %SHphaseCorrectHRTF Apply one of the developed phase correction
3 %methods to the HRTFs.
4 %
5 % Input arguments:
6 % method String, 'linearPhase', 'reduceRadius' or 'none'
7 % hrir L Left ear HRIRs
8 % hrir R Rgiht ear HRIRs
9 % elevations HRIR elevations

10 % azimuths HRIR azimuths
11 % Fs Sampling rate
12 % N HOA truncation order
13 % c Speed of sound
14 % R HRIR loudspeaker radius
15 % r Assumed head radius
16 % T0 Delay from loudspeaker to origo
17 % nfft FFT size (does not really matter as long as it is
18 % larger than the HRIR length)
19 %
20 % Output arguments:
21 % hrir L new Left ear corrected HRIRs
22 % hrir R new Right ear corrected HRIRs
23 %
24 %
25 % Jakob Vennerød, NTNU, 2014.
26 % jakob.vennerod@gmail.com
27
28 % Length of HRIRs
29 M = size(hrir L,2);
30
31 switch(method)
32
33 case{'linearPhase'}
34 % Set the phase to linear for each HRTF, for all frequencies
35 % above kr = N. The linear phase is set so that the group
36 % delay corresponds to T0.
37
38 nAngles = size(hrir L,1);
39
40 % Convert to HRTF
41 HRTF L = fft(hrir L,nfft,2);
42 HRTF R = fft(hrir R,nfft,2);
43
44 % Freq vector
45 f = linspace(0,Fs-Fs/nfft,nfft);
46
47 % Calculate frequency limit and index
48 flim = N/r*c/(2*pi);
49 idx = find(f>=flim);
50 idx = idx(1);
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51
52 % Width of radial frequency bins
53 dw = 2*pi*(f(2)-f(1));
54
55 % Phase correct HRTFs
56 for i = 1:nAngles
57 % Original phase
58 phi L = unwrap(angle(HRTF L(i,:)));
59 % Modify phase
60 phi L(idx:nfft/2) = phi L(idx)-T0*dw*(0:nfft/2-idx);
61 phi R = unwrap(angle(HRTF R(i,:)));
62 phi R(idx:nfft/2) = phi R(idx)-T0*dw*(0:nfft/2-idx);
63 % Modify HRTFs
64 HRTF L(i,idx:nfft/2) = abs(HRTF L(i,idx:nfft/2)).*...
65 exp(1i*phi L(idx:nfft/2));
66 HRTF R(i,idx:nfft/2) = abs(HRTF R(i,idx:nfft/2)).*...
67 exp(1i*phi R(idx:nfft/2));
68 HRTF L(i,nfft/2+2:end) = conj(HRTF L(i,nfft/2:-1:2));
69 HRTF R(i,nfft/2+2:end) = conj(HRTF R(i,nfft/2:-1:2));
70 end
71
72 % Convert to HRIRs
73 hrir L new = ifft(HRTF L,nfft,2);
74 hrir R new = ifft(HRTF R,nfft,2);
75
76 case{'reduceRadius'}
77 % Reduce the head radius such that kr is constant (=N)
78 % above flim.
79
80 nAngles = size(hrir L,1);
81
82 % Convert to HRTF
83 HRTF L = fft(hrir L,nfft,2);
84 HRTF R = fft(hrir R,nfft,2);
85
86 % Freq vector
87 f = linspace(0,Fs-Fs/nfft,nfft);
88
89 % Calculate frequency limit and index
90 flim = N/r*c/(2*pi);
91 idx = find(f>=flim);
92 idx = idx(1);
93
94 % New radius (kr = N);
95 new r = N./(2*pi*f/c);
96
97 % Phase correct HRTFs
98 for i = 1:nAngles
99 % Find distances from the loudspeaker to the ears

100 dist L = SHdistanceToPointOnSphere(R,elevations(i),...
101 azimuths(i),r,[0 r 0],1000);
102 dist R = SHdistanceToPointOnSphere(R,elevations(i),...
103 azimuths(i),r,[0 -r 0],1000);
104
105 % Depending on in which half-sphere the loudspeaker is..
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106 if(azimuths(i)>=0 && azimuths(i)<pi)
107 % Left ear is on "sunny side"
108 costheta = (rˆ2+Rˆ2-dist Lˆ2)/(2*r*R);
109 new dist L = sqrt(new r.ˆ2+Rˆ2-2*new r*R*costheta);
110 % Right ear is on "shadow side". Find Great
111 % Circle Distance
112 gcd = dist R - sqrt(rˆ2+Rˆ2); %
113 new gcd = gcd/r*new r;
114 new dir = sqrt(Rˆ2+new r.ˆ2);
115 new dist R = new gcd + new dir;
116 else
117 % Right ear is on "sunny side"
118 costheta = (rˆ2+Rˆ2-dist Rˆ2)/(2*r*R);
119 new dist R = sqrt(new r.ˆ2+Rˆ2-2*new r*R*costheta);
120 % Left ear is on "shadow side". Find Great
121 % Circle Distance
122 gcd = dist L - sqrt(rˆ2+Rˆ2);
123 new gcd = gcd/r*new r;
124 new dir = sqrt(Rˆ2+new r.ˆ2);
125 new dist L = new gcd + new dir;
126 end
127
128 % Calculate distance differences
129 dist diff L = new dist L - dist L;
130 dist diff R = new dist R - dist R;
131
132 % Phase correction terms
133 phasecorr L = exp(-1i*2*pi*f.*dist diff L/c);
134 phasecorr R = exp(-1i*2*pi*f.*dist diff R/c);
135
136 % Modify HRTFs
137 HRTF L(i,idx:nfft/2) = HRTF L(i,idx:nfft/2).*...
138 phasecorr L(idx:nfft/2);
139 HRTF R(i,idx:nfft/2) = HRTF R(i,idx:nfft/2).*...
140 phasecorr R(idx:nfft/2);
141 HRTF L(i,nfft/2+2:end) = conj(HRTF L(i,nfft/2:-1:2));
142 HRTF R(i,nfft/2+2:end) = conj(HRTF R(i,nfft/2:-1:2));
143 end
144
145 % Convert to HRIRs
146 hrir L new = ifft(HRTF L,nfft,2);
147 hrir R new = ifft(HRTF R,nfft,2);
148
149 case{'none'}
150 % No phase correction, just pass the HRIRs on..
151 hrir L new = hrir L;
152 hrir R new = hrir R;
153 end
154
155 % Remove zeros.
156 hrir L new = hrir L new(:,1:M);
157 hrir R new = hrir R new(:,1:M);
158
159 end
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SHtransform.m

1 function [ Y ] = SHtransform(N, theta, phi, def)
2 %SHtransform Calculates the Spherical Harmonics coefficients Ynm
3 % Usage: Y = SHtransform(N, theta, phi, def)
4 %
5 % Takes in HOA order N, angle vectors theta and phi
6 % Returns the Spherical Harmonics amplitudes
7 %
8 % Yq(n,m) =
9 %

10 % [Y1(0,0) Y1(1,-1) Y1(1,0) Y(1,1) Y1(2,-1) ... Y1(N,N);
11 % Y2(0,0) ...
12 % ...
13 % YQ(0,0) ... ... YQ(N,N)]
14 %
15 % def is the definition parameter:
16 % 1 = Williams' definition (complex Y)
17 % 0 = Daniel's definition (real Y)
18 %
19 %
20 % Jakob Vennerød, NTNU, 2014.
21 % jakob.vennerod@gmail.com
22
23 % Number of calc. angles
24 Q = length(theta);
25
26 % Initialize
27 Y = zeros(Q,(N+1)ˆ2);
28
29 % Compute factorials
30 factorials = [1 1 cumprod(2:(2*N))];
31
32 % Compute phase values
33 phase = zeros(Q,N);
34
35 for m = 1:N
36 phase(:,m) = exp(1i*m*phi);
37 end
38 if(def == 1) % Williams' definition
39
40 Y(:,1) = 1/sqrt(4*pi);
41 for n = 1:N
42
43 % Find Legendre polynomials of degree n
44 Pn = legendre(n,cos(theta)).';
45
46 % Calculate spherilca harmonics
47 idx = nˆ2 + 1 + n ;
48 for m = 1:n
49 tmp = sqrt((2*n+1)/(4*pi)*factorials(n-m+1)/...
50 factorials(n+m+1))*Pn(:,m+1).*phase(:,m);
51 % Positive m
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52 Y(:,idx+m) = tmp;
53 % Negative m
54 Y(:,idx-m) = (-1)ˆm*conj(tmp);
55 end
56 % m = 0
57 Y(:,idx) = sqrt((2*n+1)/(4*pi))*Pn(:,1);
58
59 end
60
61 else % Daniel's definition
62
63 Y(:,1) = 1;
64 for n = 1:N
65
66 % Find Legendre polynomials of degree n
67 Pn = legendre(n,cos(theta)).';
68
69 % Calculate spherical harmonics
70 idx = nˆ2 + 1 + n ;
71 for m = 1:n
72 tmp = sqrt((2*n+1)*2*factorials(n-m+1)/...
73 factorials(n+m+1))*Pn(:,m+1);
74 % Positive m
75 Y(:,idx+m) = tmp.*real(phase(:,m));
76 % Negative m
77 Y(:,idx-m) = tmp.*imag(phase(:,m));
78 end
79 % m = 0
80 Y(:,idx) = sqrt((2*n+1)*1)*Pn(:,1);
81
82 end
83 end
84 end
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